Some woodframe building earthquake damage can be life-threatening, as in the case of collapse or near-collapse. More frequently, the primary threat is economic in nature.

Wood buildings have been seismically researched much less than other basic types of construction—concrete, masonry, and steel—although approximately 80% of the buildings in the USA are made of wood. In California, 99% of the dwelling units are in woodframe buildings, and wood is commonly used for schools and for smaller office and commercial buildings.

1933 Long Beach Earthquake
photo credit: Austin Studio
Collapse of unbraced cripple walls beneath the first floor is a vulnerability still common in older homes today.

1971 San Fernando Earthquake
photo credit: EERC-NISEE
While it is often said that wooden framing is flexible and absorbs seismic stress, the sheathing materials and their attachment to the frame are just as essential. In this case, the earthquake struck before the sheathing had been applied.

1989 Loma Prieta Earthquake
photo credit: GFDS Engineers
Soft-story collapse or near-collapse was evident in some cases in this Bay Area earthquake.

S-16
Woodframe Project: Case Studies
edited by A. Filiatrault; editor's affiliation: UC San Diego

To request an order form to purchase Woodframe Project Publications, contact CUREE at:

website: www.curee.org
e-mail: curee@curee.org
tel.: 510-231-9557

Partial List of Publications

1. Testing and Analysis
 - Anvitha Pavan
 - Associate Manager

2. Field Investigations
 - John Beck
 - Associate Manager

3. Building Code
 - Prof. André Filiatrault
 - UCSD

4. Economic Applications
 - Michael Symans
 - K. Fridley
 - W. Cofer
 - Y. Du
 -研究人员的关联：华盛顿州立大学

5. Seismic Performance of Gypsum Walls: Experimental Test Program
 - J. Mahaney
 - B. Kehoe
 - Wiss, Janney, Elstner and Associates

 - H. Krawinkler
 - F. Parisi
 - L. Ibarra
 - A. Ayoub
 - R. Medina
 - 研究人员的关联：斯坦福大学

7. Seismic Modeling of Index Woodframe Buildings
 - J. Beck
 - V. Camelo
 - J. Hall
 - Caltech

8. Seismic Behavior of Level and Stepped Cripple Walls
 - F. Fonseca
 - S. Rose
 - S. Campbell
 - Brigham Young University

 - D. Rosowsky
 - J. H. Kim
 - Oregon State University

10. Cyclic Response of Woodframe Shearwalls: Loading Protocol and Rate of Loading Effects
 - M. Symans
 - K. Fridley
 - W. Cofer
 - Y. Du
 - 研究人员的关联：华盛顿州立大学

11. Improving Loss Estimation for Woodframe Buildings
 - K. McMullin
 - D. Merrick
 - San Jose State University

12. Fall/Winter 1999 / Summer 2000 - Earthquake Hazard Mitigation of Woodframe Construction
 - Shake Table Tests of a Two-Story Woodframe House
 - Two-Story Single Family House Shake Table Test Data

The M. Symans, K. Fridley, W. Cofer, and Y. Du; 研究人员的关联：华盛顿州立大学
K.A. Porter (1), J.L. Beck (1), H.A. Seligson (2), C.R. Scawthorn (2), L.T. Tobin (3), R. Young (4), T. Boyd (4); 研究人员的关联：
K.M. Mosalam, C. Machado, K.-U. Gliniorz, C. Naito, E. Kunzel, and S. Mahin; 研究人员的关联：UC Berkeley
F. Fonseca, S. Rose, S. Campbell; 研究人员的关联：Brigham Young University
K. McMullin and D. Merrick; 研究人员的关联：San Jose State University
J. Mahaney and B. Kehoe; 研究人员的关联：Wiss, Janney, Elstner and Associates
D. Rosowsky and J. H. Kim; 研究人员的关联：Oregon State University
J. Beck, V. Camelo, and J. Hall; 研究人员的关联：Caltech
H. Krawinkler, F. Parisi, L. Ibarra, A. Ayoub, and R. Medina; 研究人员的关联：Stanford University

1994 Northridge Earthquake
photo credit: R. Reitherman
An unknown number of multi-family buildings with parking in ground level, probably in the tens of thousands, exist in California

To request an order form to purchase Woodframe Project Publications, contact CUREE at:

website: www.curee.org
e-mail: curee@curee.org
tel.: 510-231-9557

CUREE Caltech Woodframe Project Publications

Funded by the Federal Emergency Management Agency through a grant administered by the California Governor’s Office of Emergency Services.