Modeling and Seismic Evaluation of Nonstructural Components: Testing Frame for Experimental Evaluation of Suspended Ceiling Systems

By
Andrei M. Reinhorn, Ki-Pung Ryu and Giuseppe Maddaloni

Technical Report MCEER-10-0004 ■ June 30, 2010

This research was conducted at the University at Buffalo, State University of New York and was supported by the National Science Foundation under Grant No. CMMI-0721399.
Sponsored by the
National Science Foundation
NSF Grant Number CMMI-0721399

Project Title
Simulation of the Seismic Performance of Nonstructural Systems

Project Team
University of Nevada Reno
University at Buffalo, State University of New York
Georgia Institute of Technology
Rutherford & Chekene
University of California, San Diego
Consortium of Universities for Research in Earthquake Engineering (CUREE)

Web Site
http://www.nees-nonstructural.org

DISCLAIMER
This report is based upon work supported by the National Science Foundation under Grant No. CMMI-0721399. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the investigators and do not necessarily reflect the views of CUREE, the National Science Foundation, or other sponsors.
Modeling and Seismic Evaluation of Nonstructural Components: Testing Frame for Experimental Evaluation of Suspended Ceiling Systems

by

Andrei M. Reinhorn,1 Ki-Pung Ryu2 and Giuseppe Maddaloni3

Publication Date: June 30, 2010;
Revised May 27, 2011
Submittal Date: January 28, 2010

Technical Report MCEER-10-0004

NSF Grant Number CMMI-0721399

1 Clifford C. Furnas Eminent Professor, Department of Civil, Structural and Environmental Engineering, University at Buffalo, State University of New York
2 Research Scientist, Department of Civil, Structural and Environmental Engineering, University at Buffalo, State University of New York
3 Assistant Professor, Department of Technology, University of Naples “Parthenope,” Italy

MCEER
University at Buffalo, State University of New York
Red Jacket Quadrangle, Buffalo, NY 14261
Phone: (716) 645-3391; Fax (716) 645-3399
E-mail: mceer@buffalo.edu; WWW Site: http://mceer.buffalo.edu
Project Overview

NEES Nonstructural: Simulation of the Seismic Performance of Nonstructural Systems

Nonstructural systems represent 75% of the loss exposure of U.S. buildings to earthquakes, and account for over 78% of the total estimated national annualized earthquake loss. A very widely used nonstructural system, which represents a significant investment, is the ceiling-piping-partition system. Past earthquakes and numerical modeling considering potential earthquake scenarios show that the damage to this system causes the preponderance of U.S. earthquake losses. Nevertheless, due to the lack of system-level research studies, its seismic response is poorly understood. Consequently, its seismic performance contributes to increased failure probabilities and damage consequences, loss of function, and potential for injuries. All these factors contribute to decreased seismic resilience of both individual buildings and entire communities.

Ceiling-piping-partition systems consist of several components and subsystems, have complex three-dimensional geometries and complicated boundary conditions because of their multiple attachment points to the main structure, and are spread over large areas in all directions. Their seismic response, their interaction with the structural system they are suspended from or attached to, and their failure mechanisms are not well understood. Moreover, their damage levels and fragilities are poorly defined due to the lack of system-level experimental studies and modeling capability. Their seismic behavior cannot be dependably analyzed and predicted due to a lack of numerical simulation tools. In addition, modern protective technologies, which are readily used in structural systems, have never been applied to these systems.

This project sought to integrate multidisciplinary system-level studies to develop, for the first time, a simulation capability and implementation process to enhance the seismic performance of the ceiling piping-partition nonstructural system. A comprehensive experimental program using both the University of Nevada, Reno (UNR) and University at Buffalo (UB) NEES Equipment Sites was developed to carry out subsystem and system-level full-scale experiments. The E-Defense facility in Japan was used to carry out a payload project in coordination with Japanese researchers. Integrated with this experimental effort was a numerical simulation program that developed experimentally verified analytical models; established system and subsystem fragility functions; and created visualization tools to provide engineering educators and practitioners with sketch-based modeling capabilities. Public policy investigations were designed to support implementation of the research results.

The systems engineering research carried out in this project will help to move the field to a new level of experimentally validated computer simulation of nonstructural systems and establish a model methodology for future systems engineering studies. A system-level multi-site experimental research plan has resulted in a large-scale tunable test-bed with adjustable dynamic properties, which is useful for future experiments. Subsystem and system level experimental results have produced unique fragility data useful for practitioners.

This report describes the development of a new testing facility for the evaluation of suspended ceilings and other nonstructural components that can be used with single or tandem shake tables. The 20 × 50 ft test frame was designed to simulate realistic ceiling performance correlated with the response observed during real earthquakes. The frame has dynamic characteristics with variable frequencies to match those typically
found in floors (or roofs) with suspended ceilings. It was also designed to accommodate various structural materials and different framing layouts. Analytical models were developed using SAP2000 to estimate the dynamic properties and complete the design of the test frame. The combined designs of the physical frame and the shake table motion allow for testing a variety of suspended systems while simulating realistic floor motions and eliminating side effects due to wall distortions. Finally, procedures for motion design that can be implemented in other experimental facilities are introduced.

Project Management Committee

Manos Maragakis, Principal Investigator, University of Nevada Reno, Department of Civil Engineering, Reno, NV 89557; maragaki@unr.edu.

André Filiatrault, Co-Principal Investigator, University at Buffalo, State University of New York, Department of Civil, Structural and Environmental Engineering, Buffalo, NY 14260; af36@buffalo.edu.

Steven French, Co-Principal Investigator, Georgia Institute of Technology, College of Architecture, P.O. Box 0695, Atlanta, GA 30332; Steve.French@arch.gatech.edu.

William Holmes, Rutherford & Chekene, 55 Second Street, Suite 600, San Francisco, CA 94105; wholmes@ruthchek.com.

Tara Hutchinson, Co-Principal Investigator, University of California, San Diego, Department of Structural Engineering, 9500 Gilman Drive, #0085, La Jolla, CA 92093; tara@ucsd.edu.

Robert Reitherman, Co-Principal Investigator, CUREE, 1301 S. 46th Street, Bldg. 420, Richmond, CA 94804; reitherman@curee.org.
ABSTRACT

In the last few decades, it has become clear that failure of suspended ceiling systems in earthquakes endangers safety and impedes continuous operation of a building. In order to evaluate the seismic performance of suspended ceiling systems and provide a better understanding of their seismic design, many shaking table tests have been conducted. However, there were many limitations in these tests, due to the size, frequency limits and work limitations of currently used testing frames.

The purpose of this report is to describe the development of a new testing facility for use with single or tandem shake tables to evaluate suspended ceilings and other nonstructural components. A large reconfigurable frame of 20 ft. by 50 ft. was developed to test a continuous suspended ceiling of up to 1,000 ft². The frame has dynamic characteristics with variable frequencies to match those typical of floors and roofs with suspended ceilings. Analytical models were developed using the structural analysis program SAP2000 to estimate the dynamic properties and complete the design of the frame.

Since a test frame has flexibilities and a test system is not perfect, the frame as built cannot accurately deliver a desired “floor motion” at a specific location in a structure. A special open loop procedure, which provides a compensated command “drive” signal to a shake table to obtain a “target floor motion spectrum” at the roof level of the test frame, was proposed and verified experimentally.

The combined designs of the physical frame and the shake table motion allow for testing of a variety of suspended systems while simulating more realistic floor motions and eliminating side effects caused by wall distortions. This study describes the design of the frame and introduces the procedure for motion design which can also be implemented in other experimental facilities.
ACKNOWLEDGEMENTS

Financial support for the work described in this report was provided by the National Science Foundation through the George E. Brown, Jr. Network for Earthquake Engineering Simulation Research (NEESR-GC) for Grand Challenge on Simulation of Seismic Performance of Nonstructural Components, Award #CMMI 0721399 and by the Multidisciplinary Center for Earthquake Engineering Research through grants from New York State. This support is gratefully acknowledged. The support of Prof. G. Maddaloni by the University of Naples, “Parthenope” (Italy), for the development of the compensation procedures, is also acknowledged.

The authors also acknowledge the advice received from industry and academic representatives active in the specific professional areas (alphabetically): Dennis Alvarez, Bob Bachman, Amir Gilani, Paul A Hough, Tony Ingratta, and Shakhzod Takhirov, who reviewed the main parts of this study and made valuable suggestions.

The authors also acknowledge the dedicated assistance of the Structural Engineering and Earthquake Simulation Laboratory (SEESL) staff Mark Pitman, Scot Weinreber and Chris Zimmerman, in performing the experimental work.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Procedures for Seismic Evaluation of Suspended Ceilings</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Previous Tests of Suspended Ceiling Systems</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Characteristics of Generic Floor Systems</td>
<td>6</td>
</tr>
<tr>
<td>1.1.2.1</td>
<td>Amplifications in Corner of Floors</td>
<td>6</td>
</tr>
<tr>
<td>1.1.2.2</td>
<td>Amplifications in Floors or Roofs Plates</td>
<td>9</td>
</tr>
<tr>
<td>1.1.2.3</td>
<td>Requirements for a Frame Simulating One Story in Buildings</td>
<td>10</td>
</tr>
<tr>
<td>1.1.2.4</td>
<td>Fundamental Frequencies of Typical Floors</td>
<td>11</td>
</tr>
<tr>
<td>1.2</td>
<td>Scope and Outline of this Report</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>TEST FRAME DESIGN</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Design Criteria</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Overall Geometry</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Dynamic Characteristics</td>
<td>22</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Proposed Dynamic Characteristics of Test Frame</td>
<td>22</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Estimate of Dynamic Properties of Test Frame</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Frame Capabilities</td>
<td>25</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Frequency Range of Frame</td>
<td>25</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Adjustable Plenum Height</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Synchronization of Shake Tables</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Applicability of the Design to Other Installations</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>ANALYTICAL MODELING</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Modeling of Existing Test Frame (16 x 16 ft.)</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Modeling of New Test Frames (20 × 20 ft. and 20 × 50 ft.)</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Estimate of Frame Capabilities by Incremental Dynamic Analysis</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>DESIGN AND EVALUATION OF FRAME’S ROOF TESTING MOTION</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Standard Requirement - Current and Proposed</td>
<td>39</td>
</tr>
<tr>
<td>4.1.1</td>
<td>AC-156 Required Response Spectrum</td>
<td>39</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Proposed Vertical Motion for AC-156 Required Response Spectrum</td>
<td>41</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Experimental Evaluation on the Proposed Vertical Motion</td>
<td>44</td>
</tr>
<tr>
<td>4.1.3.1</td>
<td>Shake Table Simulated Motions</td>
<td>44</td>
</tr>
<tr>
<td>4.1.3.2</td>
<td>Comparison of Simulated Floor (Roof) Motions</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Alternative Floor (Roof) Motion</td>
<td>60</td>
</tr>
<tr>
<td>4.3</td>
<td>Roof Motion Amplification During Testing</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Design of Test Roof Motion</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>COMPENSATION PROCEDURE FOR SHAKE TABLE SIMULATION</td>
<td>71</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>5.2</td>
<td>Ground Motion for Required Response Spectrum</td>
<td>73</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT’D)

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>Required Response Spectrum in Structures</td>
<td>77</td>
</tr>
<tr>
<td>5.4</td>
<td>Required Floor Response Spectrum</td>
<td>82</td>
</tr>
<tr>
<td>5.5</td>
<td>Experimental Verification</td>
<td>92</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Uncompensated Input and Achieved Motions</td>
<td>92</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Development of Transfer Functions</td>
<td>97</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Compensated Input and Achieved Motions</td>
<td>97</td>
</tr>
<tr>
<td>5.5.4</td>
<td>New Compensation Procedure (1st Iteration)</td>
<td>103</td>
</tr>
<tr>
<td>5.6</td>
<td>Summary</td>
<td>106</td>
</tr>
<tr>
<td>6</td>
<td>SUMMARY, CONCLUDING REMARKS AND RECOMMENDATIONS</td>
<td>107</td>
</tr>
<tr>
<td>6.1</td>
<td>Summary and Concluding Remarks</td>
<td>107</td>
</tr>
<tr>
<td>6.2</td>
<td>Recommendations for Future Developments</td>
<td>109</td>
</tr>
<tr>
<td>7</td>
<td>REFERENCES</td>
<td>111</td>
</tr>
</tbody>
</table>

Appendix A DESIGN & MODELING FEEDBACK-1..117

Appendix B DESIGN & MODELING FEEDBACK-2..127
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Isometric Drawing of R-4 Frame (reproduced from ANCO, 1983)</td>
<td>3</td>
</tr>
<tr>
<td>1-2</td>
<td>Test Frame and Suspended Ceiling (after Rihal and Granneman, 1984)</td>
<td>3</td>
</tr>
<tr>
<td>1-3</td>
<td>Views of Plan and Elevation of Test Frame (reproduced from Yao, 2000)</td>
<td>4</td>
</tr>
<tr>
<td>1-4</td>
<td>Test Frame Mounted on a Shake Table</td>
<td>5</td>
</tr>
<tr>
<td>1-5</td>
<td>Amplification of Motions in Corner of Floors</td>
<td>7</td>
</tr>
<tr>
<td>1-6</td>
<td>Schematic Model for Describing the Flexibility of Roof/Floor</td>
<td>9</td>
</tr>
<tr>
<td>1-7</td>
<td>Floor and Roof Accelerations of Typical Story Structure (after Roh et al., 2008)</td>
<td>10</td>
</tr>
</tbody>
</table>

2-1	CAD 3D Model of the New Test Frame (20 × 50 ft.)	16
2-2	Plan View of the Base of the Frame (20 × 50 ft.)	17
2-3	Elevation of the South (North) Side of the Frame (20 × 50 ft.)	18
2-4	Plan View of the Top of the Frame (20 × 50 ft.) Roof Grid	19
2-5	Elevation of the Typical Side of the Frame (20 × 50 ft.) - Typical “Side” Frame	20
2-6	Section A-A of the Frame (20 × 50 ft.) - Open “Side” Frame	21
2-7	Analytical Model (20 × 50 ft.) with Vertical Fundamental Frequency of 10.2 Hz	23
2-8	Analytical Model (20 × 50 ft.) with Horizontal Fundamental Frequency of 17.7 Hz	23
2-9	Analytical Model (20 × 20 ft.) with Vert. Fundamental Frequency of 10.2 Hz	24
2-10	Analytical Model (20 × 20 ft.) with Hor. Fundamental Frequency of 17.4 Hz	24
2-11	Location of the Vertical Frequency of the Frame on the RRS	26
2-12	Section of the Frame (Adjustable Plenum Heights)	27

3-1	AutoCAD 3D Model of the Existing Test Frame (16 × 16 ft.) on a Shake Table	29
3-2	Analytical Model of the Existing Test Frame (16 × 16 ft.) in SAP2000	30
3-3	AutoCAD 3D Model of a New Test Frame (20 × 20 ft.) on a Shake Table	32
3-4	Analytical Model of the New Test Frame (20 × 20 ft.) from SAP2000	33

4-1	AC-156 RRS for Horizontal and Vertical Shaking	40
4-2	AC-156 RRS for Horizontal and Vertical Shaking in Terms of Spectral Acceleration Demand, (S_a), A_{FLX} and A_{RIG}	42
4-3	AC-156 RRS for Horizontal and Vertical Shaking in Terms of S_{DS}	43
4-4	AC-156 RRS for Horizontal and Vertical Shaking in Terms of S_{S}	43
4-5	Test Input Motions and Response Spectra for No.1 (Current AC-156, S_{S} =1.50g)	46
4-6	Test Input Motions and Response Spectra for No.2 (Proposed AC-156, S_{S} =1.50g)	47
4-7	Test Input Motions and Response Spectra for No.3 (Current AC-156, S_{S} =1.75g)	48
LIST OF FIGURES (CONT’D)

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-8</td>
<td>Test Input Motions and Response Spectra for No.4</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>(Proposed AC-156, $S_S = 1.75g$)</td>
<td></td>
</tr>
<tr>
<td>4-9</td>
<td>Response Spectra Obtained from the Accelerometers Located on the Three</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Locations for Test No. 1 (Current AC-156, $S_S = 1.50g$)</td>
<td></td>
</tr>
<tr>
<td>4-10</td>
<td>Response Spectra for Each Direction for Test No.1</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>(Current AC-156, $S_S = 1.50g$)</td>
<td></td>
</tr>
<tr>
<td>4-11</td>
<td>Response Spectra Obtained from the Accelerometers Located on the Three</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Locations for Test No. 2 (Proposed AC-156, $S_S = 1.50g$)</td>
<td></td>
</tr>
<tr>
<td>4-12</td>
<td>Response Spectra for Each Direction for Test No.2</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>(Proposed AC-156, $S_S = 1.50g$)</td>
<td></td>
</tr>
<tr>
<td>4-13</td>
<td>Response Spectra Obtained from the Accelerometers Located on the Three</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Locations for Test No. 3 (Current AC-156, $S_S = 1.75g$)</td>
<td></td>
</tr>
<tr>
<td>4-14</td>
<td>Response Spectra for Each Direction for Test No.3</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>(Current AC-156, $S_S = 1.75g$)</td>
<td></td>
</tr>
<tr>
<td>4-15</td>
<td>Response Spectra Obtained from the Accelerometers Located on the Three</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Locations for Test No. 4 (Proposed AC-156, $S_S = 1.75g$)</td>
<td></td>
</tr>
<tr>
<td>4-16</td>
<td>Response Spectra for Each Direction for Test No.4</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>(Proposed AC-156, $S_S = 1.75g$)</td>
<td></td>
</tr>
<tr>
<td>4-17</td>
<td>Building Model (reproduced from Retamales et al., 2009)</td>
<td>61</td>
</tr>
<tr>
<td>4-18</td>
<td>Schematic Model for Describing the Roof Motion Amplification</td>
<td>63</td>
</tr>
<tr>
<td>4-19</td>
<td>Variation of Vertical Acceleration Response Spectra (R.S.) using Different</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Input Motions: Effects of the Proposed Input Motion</td>
<td></td>
</tr>
<tr>
<td>4-20</td>
<td>Variation of Vertical R.S. Acceleration Using the Current AC-156 Simulated</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Input Motion: Effects of Various Ceilings</td>
<td></td>
</tr>
<tr>
<td>4-21</td>
<td>Variation of Vertical R.S. Acceleration Using the Proposed AC-156 Simulated</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Input Motion: Effects of Various Ceilings</td>
<td></td>
</tr>
<tr>
<td>4-22</td>
<td>Acceleration Response Spectra (R.S.) for Recommended Input Motions in</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Three Directions: FEMA461/ATC58</td>
<td></td>
</tr>
<tr>
<td>4-23</td>
<td>Variation of Vertical R.S. using FEMA461/ATC58 Recommended Input</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Motions: Effects of Input Motions</td>
<td></td>
</tr>
<tr>
<td>5-1</td>
<td>Shake Table System: Equivalent SDOF (after Maddaloni et al., 2009b)</td>
<td>74</td>
</tr>
<tr>
<td>5-2</td>
<td>Schematic Diagram of Shake Table Simulation of Ground Motion</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>(Dashed Line Indicates Possible Iterations) (reproduced from Maddaloni et al., 2009b)</td>
<td></td>
</tr>
<tr>
<td>5-3</td>
<td>Simulation of Structure Motion: Equivalent MDOF (reproduced from Maddaloni et al., 2009b)</td>
<td>78</td>
</tr>
<tr>
<td>5-4</td>
<td>Schematic Diagram of Compensated Simulation Motion for the Structure</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>(Dashed Line Indicates Possible Iterations) (reproduced from Maddaloni et al., 2009b)</td>
<td></td>
</tr>
<tr>
<td>5-5</td>
<td>Experimental Implementation: Compensation for a Test Frame</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>(reproduced from Maddaloni et al., 2009b)</td>
<td></td>
</tr>
<tr>
<td>FIGURE</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5-6</td>
<td>Schematic Diagram of Shake Table Simulation of a Required Floor Response Spectrum (Dashed Line Indicates Possible Iterations)</td>
<td>83</td>
</tr>
<tr>
<td>5-7</td>
<td>Required Response Spectrum (RRS, $S_s = 1.75g$) vs. Response Spectra of the Desired (Target) and Achieved (ACHTBL) Table Motions</td>
<td>85</td>
</tr>
<tr>
<td>5-8</td>
<td>Schematic Representation of the Transfer Function Concept for the Table (H_t) and Structure (H_s) (reproduced From Maddaloni et al., 2009b)</td>
<td>87</td>
</tr>
<tr>
<td>5-9</td>
<td>Magnitude (top) and Phase (bottom) of Table Transfer Functions</td>
<td>87</td>
</tr>
<tr>
<td>5-10</td>
<td>Magnitude and Phase of the Structure Transfer Functions</td>
<td>88</td>
</tr>
<tr>
<td>5-11</td>
<td>Test Required Response Spectrum (RRS, $S_s = 1.75g$) and Response Spectra of the Frame in the Longitudinal (X), Lateral (Y) and Vertical (Z) Directions</td>
<td>91</td>
</tr>
<tr>
<td>5-12</td>
<td>White Noise Excitations and Corresponding Response Spectra for Uncompensated White Noise Tests (No. 1–3)</td>
<td>93</td>
</tr>
<tr>
<td>5-13</td>
<td>Response Spectra for Each Direction from Uncompensated White Noise Tests (No. 1–3)</td>
<td>94</td>
</tr>
<tr>
<td>5-14</td>
<td>Random Input Motions and Corresponding Response Spectra for Uncompensated AC-156 RRS ($S_s = 1.75g$) Test (No. 4)</td>
<td>95</td>
</tr>
<tr>
<td>5-15</td>
<td>Response Spectra for Each Direction from Uncompensated AC-156 RRS ($S_s = 1.75g$) Test (No. 4)</td>
<td>96</td>
</tr>
<tr>
<td>5-16</td>
<td>Compensated Input Motions and Corresponding Response Spectra for Compensated White Noise Test (No. 5)</td>
<td>98</td>
</tr>
<tr>
<td>5-17</td>
<td>Compensated Input Motions and Corresponding Response Spectra for Compensated AC-156 RRS Test (No. 6)</td>
<td>99</td>
</tr>
<tr>
<td>5-18</td>
<td>Response Spectra for Each Direction from Compensated White Noise Test (No. 5)</td>
<td>100</td>
</tr>
<tr>
<td>5-19</td>
<td>Response Spectra for Each Direction from Compensated AC-156 RRS Test (No. 6)</td>
<td>101</td>
</tr>
<tr>
<td>5-20</td>
<td>New Compensated Input Motions (Developed By Iteration) and Corresponding Response Spectra for New Compensated AC-156 RRS Test (No. 7)</td>
<td>104</td>
</tr>
<tr>
<td>5-21</td>
<td>Response Spectra for Each Direction from New Compensated AC-156 RRS Test (No. 7)</td>
<td>105</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Summary of Previous Seismic Experiments of Suspended Ceiling Systems</td>
<td>2</td>
</tr>
<tr>
<td>1-2</td>
<td>List of Fundamental Frequencies of Typical Floors or Roofs</td>
<td>12</td>
</tr>
<tr>
<td>2-1</td>
<td>Estimated Fundamental Frequencies of the Test Frame Using SAP2000</td>
<td>22</td>
</tr>
<tr>
<td>2-2</td>
<td>Effect of Additional Ceiling Weights on Dynamic Properties of the Structure</td>
<td>26</td>
</tr>
<tr>
<td>3-1</td>
<td>Section Properties of the Test Frame Elements (16 × 16 ft.)</td>
<td>30</td>
</tr>
<tr>
<td>3-2</td>
<td>Comparison of Fundamental Frequencies of the Existing Frame (16 × 16 ft.)</td>
<td>31</td>
</tr>
<tr>
<td>3-3</td>
<td>Section Properties of the Test Frame Elements (20 × 20 ft. and 20 × 50 ft.)</td>
<td>32</td>
</tr>
<tr>
<td>3-4</td>
<td>Comparison of Desired and Estimated Dynamic Characteristics of the New Testing Frames</td>
<td>33</td>
</tr>
<tr>
<td>3-5</td>
<td>Analysis Results of Required and Available Strength of Elements (20 × 20 ft.)</td>
<td>35</td>
</tr>
<tr>
<td>3-6</td>
<td>Analysis Results of Required and Available Strength of Elements (20 × 50 ft.)</td>
<td>36</td>
</tr>
<tr>
<td>3-7</td>
<td>Analysis Results of Required and Available Strength of Elements (20 × 20 ft.)</td>
<td>37</td>
</tr>
<tr>
<td>3-8</td>
<td>Analysis Results of Required and Available Strength of Elements (20 × 50 ft.)</td>
<td>38</td>
</tr>
<tr>
<td>4-1</td>
<td>Spectral Acceleration Demand Per AC-156 in Terms of Multiples (α) of S_DS</td>
<td>42</td>
</tr>
<tr>
<td>4-2</td>
<td>Test Sequence for a Complete Set of Experiments</td>
<td>44</td>
</tr>
<tr>
<td>4-3</td>
<td>Response Peak Spectral Accelerations</td>
<td>51</td>
</tr>
<tr>
<td>5-1</td>
<td>δ Values of Desired and Achieved Table Motions</td>
<td>86</td>
</tr>
<tr>
<td>5-2</td>
<td>δ Values of TRS and Achieved Table Motions vs. RRS</td>
<td>90</td>
</tr>
<tr>
<td>5-3</td>
<td>Test Series of Compensation Procedure</td>
<td>92</td>
</tr>
<tr>
<td>5-4</td>
<td>δ Values of Achieved Table Motions Using Compensated Input Motions</td>
<td>102</td>
</tr>
<tr>
<td>5-5</td>
<td>δ Values of Achieved Table Motions Using the New Compensated Input Motion</td>
<td>103</td>
</tr>
<tr>
<td>A-1</td>
<td>Feedback on the Draft 1 for the Period from 1/30/09 to 2/19/2009</td>
<td>117</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

The importance of nonstructural components has been demonstrated during past earthquakes since damage to such components can result not only in a substantial reduction of functionality of buildings, but can also be a critical threat to life safety in extreme cases.

In the last few decades, it was clear that suspended ceilings failing in earthquakes endanger safety and impede continuous operation of buildings, many servicing critical health care or business functions. Current standards do not explicitly provide guidance for the seismic design of such suspended “structures” due to their heterogeneous and complex construction. As a result, manufacturers of ceiling products started a campaign, which was motivated by the seismic qualification requirements for nonstructural components introduced in the ASCE 7-05 standard, to experimentally qualify such suspended ceilings. In the past decades, experimental earthquake simulator (shaking tables) tests for suspended ceilings were conducted to evaluate the seismic performance of the systems and provide a better understanding of their seismic design.

Suspended ceiling systems have been examined experimentally in order to evaluate the seismic performance and the fragility of the systems at the University at Buffalo and other experimental facilities. A 16 ft. by 16 ft. square steel space frame designed to install and test suspended ceiling systems has been used for more than a decade for this purpose.

Realizing the shortcomings of the currently used frame, such as size, frequency limits and work limitations, a larger frame was proposed to simulate more realistic ceiling performance, correlated with the response observed in the field. The proposed frame is expected to accommodate various construction conditions in terms of materials and different framing layouts.
1.1 Procedures for Seismic Evaluation of Suspended Ceilings

A summary of testing procedures using testing frames and the main findings of some of the experiments are introduced in this chapter. In addition, information about the dynamic characteristics of generic floors supporting the suspended ceilings are surveyed and presented in order to define the required design characteristics of a testing frame. Table 1-1 summarizes the previous tests which are discussed in more detail below.

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Test Frame Description</th>
<th>Character. Freq.</th>
<th>Ceiling System Size</th>
<th>Shake Table Description</th>
<th>Test Excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCO Engineers (1983)</td>
<td>Steel Truss</td>
<td>Unknown</td>
<td>12 × 28 ft.</td>
<td>2-DOF* (ANCO Planar Tri-axial system)</td>
<td>Tri-axial Hor. & Vert. Time History Input from Taft Earthquake (1952)</td>
</tr>
<tr>
<td>Rihal & Granneman (1984)</td>
<td>Steel Grid (Horizontal Diaphragm)</td>
<td>Unknown</td>
<td>12 × 16 ft.</td>
<td>1-DOF Shaking System</td>
<td>Uni-axial Horizontal Sinusoidal Input</td>
</tr>
<tr>
<td>Badillo et al. ** (2006)</td>
<td>Steel Grid</td>
<td>~17 Hz (h) ~ 9 Hz (v)</td>
<td>16 × 16 ft.</td>
<td>6-DOF Shaking System</td>
<td>Tri-axial Hor. & Vert. Time History Input from AC 156 RRS</td>
</tr>
</tbody>
</table>

*: Degrees-Of-Freedom
**: and other researchers at UB-SEESL

1.1.1 Previous Tests of Suspended Ceiling Systems

ANCO Engineers Inc. (1983) performed experimental tests for suspended ceilings using an earthquake simulator in the ANCO Seismic Laboratory. The steel truss R-4 frame, shown in Figure 1-1, was constructed for the tests. The dynamic characteristics of the testing frame were not clearly presented in the test report. A 12 ft. by 28 ft. ceiling using a 2 ft. by 4 ft. installation module was installed in the frame. 1952 Taft earthquake ground motion was used to excite the frame mounted on an earthquake simulator. The test program demonstrated the feasibility of
using shaking table tests to evaluate seismic restraints of nonstructural ceiling components in terms of the use of shaking tables to access component dynamic behaviors and evaluate the effectiveness of building code requirements. The test report observed that the use of the vertical strut (a code requirement) did not decrease the dynamic interaction effects. Pop rivets at wall parameters and safety wires on drop-in light fixtures played a much more important role in seismic hazard mitigation.

![Isometric Drawing of R-4 Frame](image1.png)

Figure 1-1 Isometric Drawing of R-4 Frame (reproduced from ANCO, 1983)

Rihal and Granneman (1984) conducted an experimental investigation of the dynamic behavior of suspended ceiling systems during earthquakes (see Figure 1-2). The dynamic testing scheme consisted of a structural steel grid simulating a structural horizontal diaphragm, allowed to roll freely on a wheel/bearing assembly. A 12 ft. by 16 ft. suspended ceiling was installed to the grid at the top. A sinusoidal excitation was used as input motions. The main findings were that splayed wire ceiling bracing and vertical struts were effective in reduction of the dynamic response of the suspended ceiling systems.

![Test Frame and Suspended Ceiling](image2.png)

Figure 1-2 Test Frame and Suspended Ceiling (after Rihal and Granneman, 1984)
In 2000, Yao studied seismic performance of direct-hung suspended ceiling systems by analytical modeling, experimental tests, and field survey. A test frame of 48 in. x 161 in. (4 ft. x 13.4 ft.), presented in Figure 1-3, was designed to be very rigid so that its fundamental frequency was 24.8 Hz in order to avoid resonance in the test frame and earthquake motions. The input excitation was a series of uni-axial horizontal sine waves. The main findings were the ineffectiveness of sway wires and that the pop rivet and edge hanger wires provided significant seismic capacity. The study concluded that installing transverse constraint supports could prevent the lateral spread of the ceiling runners (Yao, 2000).

![Figure 1-3 Views of Plan and Elevation of Test Frame (reproduced from Yao, 2000)](image)

From 2001 through 2009, ceiling manufacturers performed an extensive series of seismic experiments on suspended ceiling systems at the Structural Engineering and Earthquake Simulation Laboratory (SEESL) of University at Buffalo, the State University of New York (UB) (e.g., Badillo et al., 2002, Kusumastuti et al., 2002, Badillo et al., 2003a-d, Repp et al., 2003, Lavan et al., 2006a-b, and Roh et al., 2008). A test frame of 16 ft. by 16 ft. was designed (Reinhorn, 2000) to represent a typical story on which suspended ceiling systems were installed in practice (see Figure 1-4). In order to simulate the worst-case scenario for actual conditions in earthquake events, the roof of the test frame was designed to have the frequency of a typical slab in the vertical direction (this concept is addressed in the following subchapter 1.1.2). The dynamic characteristics of the frame were 17 Hz and 9 Hz in horizontal and vertical directions, respectively.
In order to qualify suspended ceiling systems, the recommendations of ICC-AC-156 “Acceptance Criteria for Seismic Qualification Testing of Nonstructural Components” (ICC, 2007) were used. Although the standard addresses only single point connected nonstructural components, in absence of other standards, the main dynamic characteristics and requirements were adopted for the testing of multiple connection suspended ceilings.

Among the findings based on the series of experiments were that the use of retainer clips substantially improved the seismic capacity of ceiling systems in terms of reducing loss of tiles. However, by retaining the ceiling tiles, the inertial loads on the grid increased. The rivets, attaching main runners and cross tees to wall molding, were also effective to reduce loss of tiles. Performance levels and fragility curves were established for suspended ceilings. The fragility curves showed that including a compression post in suspended ceiling systems improved the seismic performance of the system in terms of reducing damage to the tiles and grid (Badillo et al, 2007). However, more intense testing of various ceilings without the post in the 16 ft. x 16 ft. configuration did not show conclusive reduction of damage. The issue will need further evaluations with a larger frame and relocation of posts.

Based on recent tests conducted at the Structural Engineering and Earthquake Simulation Laboratory (SEESL) at the University at Buffalo (UB), it was proposed to construct a larger test frame approximately 20 ft. by 50 ft. (Maragakis et al., 2007). The frame was proposed to
accomplish two main objectives: (i) represent actual construction practice and (ii) have variable vertical dynamic characteristics to replicate various construction conditions in real life. The following subchapter presents the required design characteristics of the testing frame.

1.1.2 Characteristics of Generic Floor Systems

The ceiling and other nonstructural components such as piping, electrical conduits and fixtures, are suspended from floors or roofs in structures. The characteristics of the testing frame are determined based on the demands of floor (roof) motion as it occurs in the structures. The floor motions are in turn a result of the base (ground) motion and amplifications due to the frame structure and floor diaphragms.

1.1.2.1 Amplifications in Corner of Floors

The ground motion is amplified by the structure at each floor by the modal amplification factors and structure mode shapes (Chopra, 2007). Figure 1-5 presents amplified relative accelerations $|\ddot{y}(t)|$ in a corner of the floors, supported by columns and strong beams and excited by ground excitations $|\ddot{x}(t)|$ in horizontal (a) and vertical directions (b), respectively.
A simplified model is shown in Figure 1-5(c). Equation (1-1) below presents the floor (absolute) acceleration $\ddot{a}(t)$ with respect to the ground and it can be calculated as the sum of two accelerations:

$$\ddot{a}(t) = \ddot{x}(t) + \ddot{y}(t)$$ \hfill (1-1)

The relative acceleration $\ddot{y}(t)$ can be expressed in a modal analysis formulation by the product of the modal participation factor Γ and structure mode shape ϕ as follows:

$$\ddot{a}(t) = \ddot{x}(t) + \Gamma \phi \ddot{D}(t)$$ \hfill (1-2)

where $\ddot{D}(t)$, the modal response, is obtained by solving:

$$\ddot{D}(t) + 2\xi \omega \dot{D}(t) + \omega^2 D(t) = -\ddot{x}(t)$$ \hfill (1-3)
Converting Equation (1-2) in the frequency domain, results in:

\[
\ddot{a}(\omega) = \ddot{x}(\omega) + \Gamma \phi \ddot{D}(\omega)
\] (1-4)

In order to explain the “amplification” of floor accelerations \(\ddot{D}(\omega)\) is assumed to be the product of the amplification factor \(\alpha\) and the ground excitation \(\ddot{x}(\omega)\) as follows:

\[
\ddot{D}(\omega) = \alpha \ddot{x}(\omega)
\] (1-5)

It is indicated that in the frequency domain the acceleration input and response are related by the specific amplifications applying to both amplitude and phase.

Inserting Equation (1-5) in Equation (1-4) the absolute acceleration is obtained:

\[
\ddot{a}(\omega) = \ddot{x}(\omega) + \Gamma \cdot \phi \cdot \alpha \cdot \ddot{x}(\omega) = (1 + \Gamma \cdot \phi \cdot \alpha) \cdot \ddot{x}(\omega)
\] (1-6)

where the term of \((1 + \Gamma \cdot \phi \cdot \alpha)\) is the amplitude of the amplification. For the horizontal floor acceleration, shown in Figure 1-5 (a), this \((1 + \Gamma \cdot \phi \cdot \alpha)\) term is being approximated as \((1 + 2 \frac{z}{h})\) in the ICC ES-AC 156 (ICC, 2007), assumed constant for the entire frequency spectrum range:

\[
A_{FLX} = S_{DS} \left(1 + 2 \frac{z}{h}\right) \leq 1.6 S_{DS}
\] (1-7)

\[
A_{RIG} = 0.4 S_{DS} \left(1 + 2 \frac{z}{h}\right) \leq 1.2 S_{DS}
\] (1-8)

where “z/h” approximates the mode shape \(\phi\) and “2” represents the product of the amplification \(\alpha\) and the modal participation factor \(\Gamma\). \(A_{FLX}\) and \(A_{RIG}\) are spectral accelerations of a flexible component and a rigid component, respectively. The \((1 + 2 \frac{z}{h})\) term was formulated in the 1997 NEHRP provisions, based on the examination of building motion records associated to strong motions with peak ground accelerations greater than 0.1g (BSSC, 1997).
For the vertical floor acceleration, shown in Figure 1-5 (b), the amplification effect (α) in the Equation (1-6) is negligible ($\alpha \to 0$) in a corner of the floor since columns are typically rigid in the vertical direction, so that floor amplification is never substantial. Therefore this study recommends a proposed vertical required response spectrum (vRRS) without amplification in vertical direction in the Equation (1-7) and (1-8), as reformulated in Chapter 4.

1.1.2.2 Amplifications in Floors or Roofs Plates

The roof of the testing frame should accommodate the vertical flexibility of floors, or roofs, in typical structures to simulate actual response during seismic events. Niousha (1999) investigated the dynamic response of an actual building with records obtained during a real earthquake. The vertical motion behavior of the nine story reinforced concrete building was studied. The vertical motion was recorded at the center of the first floor and ninth floor plates. The results showed that the vertical acceleration history at the ninth floor was amplified three (x3) times compared with one at the first floor. The amplification of vertical floor motions was caused by the floor dynamics, having the fundamental frequency of 6.0 Hz.

As shown in Figure 1-6, if the roof is rigid the same motions occur at all points on the suspending ceiling system. However, with a flexible roof, every suspension point on the ceiling has different excitations. A flexible roof is more adequate for the testing frame, challenging the grid and its components by imposing differential movements and rotations as long as the roof is representative of an actual structure.

![Figure 1-6 Schematic Model for Describing the Flexibility of Roof/Floor](image1)
The 2009 NEHRP Provisions update (PROPOSAL 8-13R1) for CHAPTER 13 *Seismic Design Requirements for Nonstructural Components* also indicates that dynamic amplification to a nonstructural component (for example, suspended ceiling systems in this study) occurs where the period of the component matches that of any mode of the supporting structure (ex. roof/floor systems for our study) (NEHRP, 2008). This concept accommodates the new design requirements that a testing frame must represent realistic structure characteristics to simulate reasonable response during earthquake tests.

1.1.2.3 Requirements for a Frame Simulating One Story in Buildings

Suspended ceiling systems are installed at different levels of buildings with different numbers of stories (Figure 1-7a). In order to test the seismic performance of the ceiling systems, a single-story test frame is used (Figure 1-7b) representing a typical story, on which the system is to be installed in practice.

Figure 1-7 Floor and Roof Accelerations of Typical Story Structure (after Roh et al., 2008)
In order to simulate the worst-case scenario for realistic conditions in seismic events, the single-story test frame is designed to accommodate the following concepts: (i) the roof of the frame must have a “typical floor” dynamic characteristic (frequency) in the vertical direction to simulate actual vertical acceleration history of the floor; and (ii) the walls of the frame are designed to be rigid in comparison to the roof system. In order to simulate the desired roof accelerations (i.e. worst-cases), the flexibility of the walls are compensated through the shake table with a special procedure (See Chapter 5).

1.1.2.4 Fundamental Frequencies of Typical Floors

The selection of dynamic characteristics (frequencies) of a roof or floor system must be based on actual roof/floor conditions that can challenge the suspended system in its realistic conditions. Roof/floor dynamic characteristics (frequencies) were mainly investigated for floor vibration studies. A survey of fundamental frequencies of typical floor systems is further presented in the following paragraphs.

AISC Design Guide Series 11 *Floor Vibration due to Human Activity* was written by Murray, Allen, and Ungar (1997), and it has provided the most common criteria for floor vibrations used by engineers in North America. This guide indicates that “most steel framed floor systems in North American office buildings have first natural frequencies in the 5 – 9 Hz range.”

In 1998, Allen and Pernica introduced the problems associated with floor vibration and control methods of floor vibration. The study showed that “a steel floor with a concrete deck usually has a natural frequency of between 3 Hz to 10 Hz” (Allen and Pernica, 1998).

Boice in 2003 studied how to improve the predicted response of steel floor systems due to walking. Natural frequency prediction of floor systems was studied by examining 103 case studies currently occupied or under construction in the United States and Europe. Floor systems of various framing were examined. The classifications for framing were hot-rolled beams, hot-rolled girders with joists, hot-rolled girders with castellated beams, and joist girders with joists. A Fast Fourier Transform (FFT) analyzer was primarily used to measure fundamental frequencies and was accurate to within 0.25 Hz. The measured fundamental frequencies of floor systems from 103 case studies were in the range of 3 Hz to 13.5 Hz (Boice, 2003).
Williams and Waldron (1994) investigated vibrations in concrete floors. The study suggested a method to calculate the fundamental frequency of concrete floors. The study presented fundamental frequencies of post-tensioned and reinforced concrete floor slabs measured in field testing. The fundamental frequencies were determined using impact hammer testing and measured in the range of 5.0 Hz to 18.4 Hz. The highest frequency of 18.4 Hz was achieved for a concrete floor slab of a laboratory having a 20 ft. by 23 ft. module (Williams and Waldron, 1994).

Allen and Rainer (1976) also studied vibration for long-span concrete floors. This study recommended vibration criteria for long-span concrete floors and presented field test data. Seven different floor conditions in three buildings were studied. The measured fundamental frequencies were in the 2.6 Hz to 7.7 Hz range.

In addition to the information found in the above publications, fundamental frequencies of typical concrete floor systems were calculated based on the formulation introduced by Blevins (1983). Fundamental frequencies of generic simply supported floors of 20 ft. by 20 ft. with slab thickness of 5 in. to 7 in. without any additional flooring or partition are in the range of 21 Hz to 35 Hz. A summary list of fundamental frequencies of floors, or roofs, is presented in Table 1-2.

<table>
<thead>
<tr>
<th>Structure Materials and System</th>
<th>Fundamental Frequency (Hz)</th>
<th>Method of Estimation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Steel</td>
<td>5.0 – 7.0</td>
<td>Author’s Comment</td>
<td>Murray et al., 1997</td>
</tr>
<tr>
<td>Steel</td>
<td>3.0 – 10.0</td>
<td>Author’s Comment</td>
<td>Allen and Pernica, 1998</td>
</tr>
<tr>
<td>Steel</td>
<td>3.0 – 13.5</td>
<td>Field Measurement (103 case studies)</td>
<td>Boice, 2003</td>
</tr>
<tr>
<td>Concrete</td>
<td>5.0 – 18.4</td>
<td>Field Measurement (13 case studies)</td>
<td>Williams and Waldron, 1994</td>
</tr>
<tr>
<td>Concrete</td>
<td>2.6 – 7.7</td>
<td>Field Measurement (7 case studies)</td>
<td>Allen and Rainer, 1976</td>
</tr>
<tr>
<td>Concrete</td>
<td>21.0 – 35.0</td>
<td>Prediction by Formulation</td>
<td>Blevins, 1983</td>
</tr>
</tbody>
</table>
It can be concluded that most constructed floors have frequencies in the range of 2.6 Hz to 18.4 Hz with exceptional cases in the range higher than 19 Hz. To challenge the suspended ceilings to maximum response for all possible cases, it is recommended to develop a frame with a roof frequency in the range of 2.6 Hz to 8.0 Hz, which will be in the range of the flat portion of the demand floor spectrum (see ICC-AC-156 standard for example).

1.2 Scope and Outline of this Report

The main goal of this study is to design an extended testing frame for seismic qualification tests of nonstructural “ceiling” components – such as suspended ceilings, electrical systems and piping, among others. The design objectives were as follows: (i) to provide extended space for a continuous ceiling surface up to 1,000 ft.2 to achieve a better correlation between ceiling system performances in experiments and in actual seismic events, and (ii) to provide a roof grid of changeable vertical dynamic characteristics to accommodate various construction practices related to material and framing. In addition, in order to simulate realistic “ceiling” system performance using the designed frame, testing floor motions and test compensation procedures were studied and presented.

Chapter 2 presents the design of a test frame including its overall geometry, dynamic characteristics, and capabilities. Chapter 3 presents the development of an analytical model of the test frame to estimate its characteristics and performance using dynamic analysis. Chapter 4 provides the design and evaluation of the frame’s floor/roof motions. A proposed modification to the AC-156 standard for vertical Required Response Spectrum (RRS) and an alternative test motion were introduced. Chapter 5 describes the formulation and evaluation of a compensation procedure for shake table simulation tests that allows correcting imperfections in the frame design. Chapter 6 presents concluding remarks for this study and recommendations for future development. References are listed in Chapter 7. The comments from advisory groups to the design and modeling draft 1 and draft 2 are presented in Appendix A and B.
CHAPTER 2
TEST FRAME DESIGN

2.1 Design Criteria

The new test frame is designed to be used for seismic testing of large nonstructural ceiling-related components – such as suspended ceilings, ducts, electrical conduit and fixtures, and piping, among others, using simulated roof motion. The design objectives are as follows:

- Provide space for a continuous ceiling surface up to 1,000 ft2 (20 ft. × 50 ft.).
- Produce a modular frame to enable testing of smaller sizes of ceilings, 20 ft. by 20 ft., etc.
- Provide a roof grid of changeable vertical frequencies in the range of 8 to 10 Hz.
- Provide in-plane-stiff walls, having frequencies in excess of 20 Hz.
- Provide out-of-plane frequencies of walls in excess of 10 Hz.

2.2 Overall Geometry

A frame is designed to represent a full-scale typical story in which a ceiling system is to be installed (see Figure 2-1). The suggested frame is designed using ASTM Grade 50 steel (ASTM, 2005). The overall size of the frame is a 20 ft.-2 in. (6.1 m) by 53 ft.-8 in. (16.4 m) (nominal 20 × 50 ft.). Its height is designed as 10 ft. to accommodate a typical slab to slab height and allow effective assemblies during testing. The frame is composed of three modular segments: two 20 ft.-2 in. (6.1 m) by 20 ft.-2 in. (6.1 m) square “typical side wall” frames, and a 13 ft.-4 in. (4.1 m) by 20 ft.-2 in. (6.1 m) “link” frame. The two 20 ft.-2 in. by 20 ft.-2 in. (nominal 20 × 20 ft.) frames could be used independently. The “link frame” will be used only in the full size assembly. The two square frames will be attached to two 23 ft. by 23 ft. square shake tables, respectively. A 10 ft.-6 in. by 23 ft. “bridge” will be installed as a work surface between the two tables. The bridge is made of two identical sub-segments, one previously used in the NEES-Wood project (Christovasilis et al., 1997) at the Structural Engineering and Earthquake Simulation Laboratory (SEESL) at the University at Buffalo, the State University of New York (UB). Commercial “open web steel joists (18K4)” are used for the roof grid system in combination with HSS 2½ x 1½ x 3/16 bars to form 4 ft. by 4 ft. modules. The detailed geometric properties of the extended frame are presented in Figure 2-2 through Figure 2-6.
As shown in Figure 2-1 above, the large test frame consists of typical side walls (see Figure 2-5), which are having rigid dynamic characteristics (17.4 Hz in plane) to represent typical wall systems. In order to install the 1,000 ft² (20 × 50 ft.) continuous ceiling system, two special open side walls are designed in the middle of the frame (see Figure 2-6). The inside columns and braces, which are shown in the typical side walls, should be removed for openings in the frame. However, the frame becomes flexible without the columns and braces. Therefore, in order to avoid out-of-plane vibration in the transverse direction, stiffer elements (i.e., bigger section trusses, columns and braces) are selected to design open side walls to have the same stiffness as other typical side walls.
Figure 2-2 Plan View of the Base of the Frame (20 × 50 ft.)
Figure 2-3 Elevation of the South (North) Side of the Frame (20 × 50 ft.)
Figure 2-4 Plan View of the Top of the Frame (20 × 50 ft.) Roof Grid
Figure 2-5 Elevation of the Typical Side of the Frame (20 × 50 ft.) - Typical “Side” Frame
Figure 2-6 Section A-A of the Frame (20 × 50 ft.) - Open “Side” Frame
2.3 Dynamic Characteristics

2.3.1 Proposed Dynamic Characteristics of Test Frame

The dynamic characteristics of the roof of the test frame are designed to represent a typical floor of buildings in order to simulate realistic dynamic responses with floor excitations using a shake table. The range of proposed frequencies is 8 Hz to 10 Hz, chosen based on the literature survey (see Chapter 1), so that the frame is able to simulate an actual amplification in the vertical direction, caused by the flexibility of floors or roofs.

The “wall” of the test frame is designed to represent a “stiffer” wall frame, whose fundamental frequency is around 20 Hz. The horizontal amplification, caused by the flexibility of walls, is simulated by designing floor motions through a compensation procedure introduced in this study (see Chapter 5).

2.3.2 Estimate of Dynamic Properties of Test Frame

Analytical models were made using SAP2000 in order to estimate the dynamic properties of the designed frames, 20 × 50 ft. and 20 × 20 ft. The “Basic Frame Configuration” includes a “floor weight (4 psf)” made of four concrete planks on the roof. The identified natural fundamental frequencies from SAP2000 are shown in Table 2-1 in the vertical and horizontal directions. The analytical model images of the designed frames are presented in Figure 2-7 through Figure 2-10.

<table>
<thead>
<tr>
<th></th>
<th>20 × 50 ft. test frame</th>
<th>20 × 20 ft. test frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical (z)</td>
<td>10.2 Hz</td>
<td>10.2 Hz</td>
</tr>
<tr>
<td>Longitudinal (x)</td>
<td>17.7 Hz</td>
<td>17.4 Hz</td>
</tr>
<tr>
<td>Transversal (y)</td>
<td>17.7 Hz</td>
<td>17.4 Hz</td>
</tr>
</tbody>
</table>

Table 2-1 Estimated Fundamental Frequencies of the Test Frame Using SAP2000
Figure 2-7 Analytical Model (20 × 50 ft.) with Vertical Fundamental Frequency of 10.2 Hz

Figure 2-8 Analytical Model (20 × 50 ft.) with Horizontal Fundamental Frequency of 17.7 Hz
Figure 2-9 Analytical Model (20 × 20 ft.) with Vert. Fundamental Frequency of 10.2 Hz

Figure 2-10 Analytical Model (20 × 20 ft.) with Hor. Fundamental Frequency of 17.4 Hz
2.4 Frame Capabilities

2.4.1 Frequency Range of Frame

The addition of ceiling weights affects the reduction of roof frequency, since the frequency is proportional to the inverse of the square root of the mass as in Equation (2-1):

\[f_{zi} = \frac{1}{2\pi} \sqrt{\frac{K}{m_i}} \quad (2 - 1) \]

where \(f_{zi}, \ m_i, \ K \) are the frequency, mass, and stiffness of the basic frame, respectively. The effect of additional ceiling weights on the frequency is indicated as the ratio of the changed frequency \(f_{zf} \) by additional ceiling weights to the initial frequency \(f_{zi} \):

\[\frac{f_{zf}}{f_{zi}} = \frac{1}{\frac{2\pi}{\sqrt{m_i}}} \sqrt{\frac{K}{m_f}} = \frac{\sqrt{m_i}}{\sqrt{m_f}} \quad (2 - 2) \]

where \(m_f \) is the sum of the mass of the basic frame \(m_i \) and an additional ceiling mass. As Equation (2-2) shows, if the mass of the initial roof frame is small, the effect of additional ceiling weights on the frequency is relatively large. In order to reduce the variation and make the roof system more practical, reducing the dynamic interaction between ceiling and roof systems, additional mass is installed to the roof grid.

The roof was designed to have a vertical frequency above 20 Hz without additional mass (bare frame) – weight of roof \(\leq \) 1 psf. The roof will support the “floor weight” made of four concrete planks of 4 ft. x 4 ft. x 2 in. placed above the center bays. This accounts for a distributed weight of 4 psf. This is the basic configuration having a vertical frequency of approximately 10 Hz.

When the extremely heavy ceiling tiles are added (having a weight of up to 3 psf), the frequency is lowered to approximately 8 Hz, where further addition of tiles will create the same effect as the original. The change in frequency due to addition of the mass is presented in Figure 2-11. The vertical frequency of the designed frame is scaled to be at the right edge of the “plateau” of the Required Response Spectrum (RRS). Thus, the changed frequency due to the additional mass of the ceiling system will still be within the range of the “plateau” i.e. at maximum.
The effects of additional mass on dynamic properties of the structure are also shown in Table 2-2. The fundamental frequencies of the frame in the longitudinal, transversal, and vertical directions are estimated using an analytical model developed in SAP2000. The additional mass effects are calculated using Equation (2-2). As expected, the ratio of the frequencies obtained from SAP2000 is well matched to the ratio of an initial mass to a changed mass of the roof.

Table 2-2 Effect of Additional Ceiling Weights on Dynamic Properties of the Structure

<table>
<thead>
<tr>
<th>Description</th>
<th>Long.</th>
<th>Trans.</th>
<th>Vert.</th>
<th>Equivalent Mass</th>
<th>Additional Mass Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>20ft. By 20ft. Frame with 18K4 (open web joist)</td>
<td>f_x (Hz)</td>
<td>f_y (Hz)</td>
<td>f_z (Hz)</td>
<td>Add. Mass (lbs·sec^2/ft)</td>
<td>Total Mass $m_i + m_f$ (lbs·sec^2/ft)</td>
</tr>
<tr>
<td>1.0 psf Bare Frame (0 psf – Add. Ceiling Mass)</td>
<td>18.9</td>
<td>19.1</td>
<td>22.1</td>
<td>0.0</td>
<td>11.9</td>
</tr>
<tr>
<td>5.0 psf “Basic Model” (4.0 psf - 4 Conc. Planks)</td>
<td>17.4</td>
<td>17.4</td>
<td>10.2</td>
<td>49.7</td>
<td>61.7</td>
</tr>
<tr>
<td>6.0 psf Floor Weight / Area (1 psf – Add. Ceiling Mass)</td>
<td>16.8</td>
<td>16.9</td>
<td>9.3</td>
<td>62.7</td>
<td>74.6</td>
</tr>
<tr>
<td>7.0 psf Floor Weight / Area (2 psf – Add. Ceiling Mass)</td>
<td>16.3</td>
<td>16.4</td>
<td>8.6</td>
<td>75.2</td>
<td>87.0</td>
</tr>
<tr>
<td>8.0 psf Floor Weight / Area (3 psf – Add. Ceiling Mass)</td>
<td>15.8</td>
<td>15.9</td>
<td>8.1</td>
<td>87.6</td>
<td>99.5</td>
</tr>
</tbody>
</table>

* The roof area of the frame is 400 ft²
2.4.2 Adjustable Plenum Height

The height of frame (10 ft.) was selected such that it could allow rapid assembly and disassembly of components, therefore allowing a greater utilization of shake tables. The plenum of different heights can be built by placing “perimeter angles” at various elevations, in increments of 4 in., therefore allowing possible plenum heights of 6 in. to 66 in. (see Figure 2-12).

![Figure 2-12 Section of the Frame (Adjustable Plenum Heights)](image)

Adverse effects for extreme plenum heights can be eliminated by a special design of the control commands represented by the “table drive” (see Chapter 4).

2.5 Synchronization of Shake Tables

The system is designed with a central link component, built to accomplish synchronization while protecting the shake tables and the specimens in case of malfunctions:

(i) allow a synchronized motion and suppress “minor discrepancies” between shake tables. Differential movement of up to 0.10 in. could be suppressed.
(ii) provide larger differential motions, larger than 0.60 in., breaking a “fuse” that will allow independent motion of shake tables without damaging any of the tables.
(iii) allow some slip between frame and tables, between 0.10 in. and 0.60 in., that will be accommodated and while a 0.30 in. will interrupt experiment.

2.6 Applicability of the Design to Other Installations

The system is custom designed for the shake tables at the SEESL at the University at Buffalo. However, the basic design of smaller components of 20 ft. × 20 ft. can be used in other large installations (UC Berkeley, US Army Corps of Engineers Construction Engineering Laboratory, etc.). Moreover, the design of the procedure for roof motion generation was made to be used at other installations with proper adjustment for local dynamics. The design team can provide training to users and lab operators for similar developments.
CHAPTER 3
ANALYTICAL MODELING

This Chapter describes the modeling and response history analysis of the new (designed) test frame using the structural analysis program, SAP2000. The intent of this part of the study is to anticipate dynamic characteristics of the frame and to evaluate capabilities of the frame, while providing a model for simulation of future experiments.

3.1 Modeling of Existing Test Frame (16 x 16 ft.)

The existing test frame of 16 ft. by 16 ft. designed more than ten years ago (Reinhorn, 2000) to test suspended ceiling systems (see Figure 3-1), was made of Hollow Structural Sections bars: HSS 4×4×1/4 for main frames and HSS 2×2×3/16 for internal columns and roof grids. A list of properties assigned to the frame members is presented in Table 3-1.

Figure 3-1 AutoCAD 3D Model of the Existing Test Frame (16 × 16 ft.) on a Shake Table

The three-dimensional analytical model shown in Figure 3-2 (a) is created using SAP2000, based on the members, dimensions, and connection details of the actual model. Welded connections (e.g., intersections of roof grids and columns to perimeter bars) are modeled as fixed connections, and bolted connections (e.g., a roof grid to side walls) are modeled as pinned connections. The boundary condition of the frame to a shake table is modeled as a hinge base since the frame is bolted to the table.
Table 3-1 Section Properties of the Test Frame Elements (16 × 16 ft.)

<table>
<thead>
<tr>
<th>Installed Location</th>
<th>HSS 6×4×1/4</th>
<th>HSS 4×4×1/4</th>
<th>HSS 2×2×3/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom Perimeters</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Top Perimeters and Edge Columns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width (in)</td>
<td>6.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Depth (in)</td>
<td>4.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Thickness (in)</td>
<td>0.233</td>
<td>0.233</td>
<td>0.174</td>
</tr>
<tr>
<td>Cross Section Area (in.²)</td>
<td>4.300</td>
<td>3.370</td>
<td>1.190</td>
</tr>
<tr>
<td>Moment of Inertia 3-3 (in.³)</td>
<td>20.900</td>
<td>7.800</td>
<td>0.641</td>
</tr>
<tr>
<td>Moment of Inertia 2-2 (in.³)</td>
<td>11.100</td>
<td>7.800</td>
<td>0.641</td>
</tr>
<tr>
<td>Shear Area 2 (in.²)</td>
<td>2.796</td>
<td>1.864</td>
<td>0.696</td>
</tr>
<tr>
<td>Shear Area 3 (in.²)</td>
<td>1.874</td>
<td>1.864</td>
<td>0.696</td>
</tr>
</tbody>
</table>

Two edge columns at the corners of the frame are modeled as one column, whose property is multiplied by a modification factor of two for a simplified model as shown in Figure 3-2(a). A detailed model, having two edge columns at each corner of the frame, is developed as shown in Figure 3-2(b), and its estimated dynamic characteristics are compared with that of the simplified model in Table 3-2. The difference is approximately 5%, and the simplified modeling scheme is used for this study.

(a) Simplified Model
(b) Detailed Model

Figure 3-2 Analytical Model of the Existing Test Frame (16 × 16 ft.) in SAP2000
In order to verify the accuracy of the modeling scheme (simplified), the dynamic characteristics of the existing frame estimated from the analytical model and experiment results are compared and presented in Table 3-2. The results show that there is approximately 20% difference between the characteristics. These errors are assumed as the results of unknown connection conditions (e.g., between fixed and pinned connections) of the frame based on parameter sensitivity studies, conducted during design in order to determine the effects of connection and boundary conditions on the dynamic characteristics of the frame. For example, the vertical frequency of the frame was 11.9 Hz if the connections between the roof grid and the side walls were modeled as fixed instead of pinned connections (bolted connections in the actual frame). The measured frequency 9.4 Hz is the value between the results (7.5 Hz and 11.9 Hz) of the two connection conditions. Although closer results can be obtained by adjusting the "unknown" boundary conditions and connectivity, as shown by the sensitivity study, the model presented above is the one obtained from idealized connectivity and boundary conditions as would be modeled by a regular user without knowing the experimental results. In the new design, the boundary conditions and the connectivity will be chosen and constructed to minimize modeling errors.

| Table 3-2 Comparison of Fundamental Frequencies of the Existing Frame (16 × 16 ft.) |
|---------------------------------|----------------|----------------|----------------|----------------|----------------|
| | Experiment (Hz) | Simplified Model SAP2000 (Hz) | Detailed Model SAP2000 (Hz) | Difference (%) |
| (1) | (2) | (3) | (4) | |
| Vertical (z) | 9.4 | 7.5 | 7.1 | 20 |
| Longitudinal (x) | 17.2 | 20.5 | 21.2 | 19 |
| Transversal (y) | 17.2 | 20.3 | 21.5 | 19 |

3.2 Modeling of New Test Frames (20 × 20 ft. and 20 × 50 ft.)

A new test frame of 20 ft.-2 in. by 20 ft.-2 in. (a square modular frame nominal 20 × 20 ft.) is created as shown in Figure 3-3. A roof grid system is created of open web joists and hollow structural sections (HSS) bars. The open web steel joists make the roof frame stiffer and lighter than that of only HSS. The height of the frame is 10ft. to represent typical building heights.
Additional diagonal braces are planned at the roof level to avoid twisting of the frame. The roof grid is designed to be able to accommodate various floor vertical frequencies with additional weights. The basic configuration is designed to have four concrete blocks of 4 ft. by 4 ft. each, whose weight is equivalent to 4 psf, so that the weight of a roof is 5 psf. A list of properties assigned to the new frame members is presented in Table 3-3.

![Figure 3-3 AutoCAD 3D Model of a New Test Frame (20 × 20 ft.) on a Shake Table](image)

Table 3-3 Section Properties of the Test Frame Elements (20 × 20 ft. and 20 × 50 ft.)

<table>
<thead>
<tr>
<th>Element Description</th>
<th>Joist 18K4</th>
<th>HSS2.5×1.5×3/16</th>
<th>HSS 4×4×1/4</th>
<th>HSS 2×2×1/4</th>
<th>HSS 8×4×1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (in)</td>
<td>-</td>
<td>1.5</td>
<td>4.0</td>
<td>2.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Depth (in)</td>
<td>18.0</td>
<td>2.5</td>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Thickness (in)</td>
<td>-</td>
<td>0.174</td>
<td>0.233</td>
<td>0.174</td>
<td>0.581</td>
</tr>
<tr>
<td>Cross Section Area (in.²)</td>
<td>-</td>
<td>1.19</td>
<td>3.37</td>
<td>1.19</td>
<td>11.70</td>
</tr>
<tr>
<td>Moment of Inertia 3-3 (in.³)</td>
<td>81.200</td>
<td>0.882</td>
<td>7.800</td>
<td>0.641</td>
<td>82.000</td>
</tr>
<tr>
<td>Moment of Inertia 2-2 (in.³)</td>
<td>-</td>
<td>0.390</td>
<td>7.800</td>
<td>0.641</td>
<td>26.600</td>
</tr>
<tr>
<td>Shear Area 2 (in.²)</td>
<td>-</td>
<td>8.870</td>
<td>1.864</td>
<td>0.696</td>
<td>9.296</td>
</tr>
<tr>
<td>Shear Area 3 (in.²)</td>
<td>-</td>
<td>0.522</td>
<td>1.864</td>
<td>0.696</td>
<td>4.648</td>
</tr>
</tbody>
</table>
The three-dimensional analytical model is created using SAP2000 as shown in Figure 3-4 based on the members, dimensions, and connection details of the design.

![Figure 3-4 Analytical Model of the New Test Frame (20 × 20 ft.) from SAP2000](image)

Using the two 20 × 20 ft. square modular frames mounted on two shake table platforms, an extended test frame of 20 ft.-2 in. by 53 ft.-8 in. is designed (nominal 20 × 50 ft.). A link frame of 13 ft. length is planned to connect the two frames (see Chapter 2.2). Dynamic characteristics are estimated using the analytical model developed in SAP2000 and compared to the desired properties (design criteria) in Table 3-4. The results show the frame has the desired dynamic properties of 2% difference in the vertical direction and approximately 13% difference in the horizontal direction. These differences are managed by adequate compensation procedure (see Chapter 5).

Table 3-4 Comparison of Desired and Estimated Dynamic Characteristics of the New Testing Frames

<table>
<thead>
<tr>
<th></th>
<th>Desired (Hz)</th>
<th>20 × 20 ft. Frame SAP2000 (Hz)</th>
<th>20 × 50 ft. Frame SAP2000 (Hz)</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(4)-(2)/(2)×100</td>
</tr>
<tr>
<td>Vertical (z)</td>
<td>8.0 – 10.0</td>
<td>10.2</td>
<td>10.2</td>
<td>2</td>
</tr>
<tr>
<td>Longitudinal (x)</td>
<td>20.0</td>
<td>17.4</td>
<td>17.6</td>
<td>12</td>
</tr>
<tr>
<td>Transversal (y)</td>
<td>20.0</td>
<td>17.4</td>
<td>17.3</td>
<td>13</td>
</tr>
</tbody>
</table>
3.3 Estimate of Frame Capabilities by Incremental Dynamic Analysis

In order to estimate capabilities of the new test frame, a response history analysis is performed using analytical models developed in SAP2000. Various shaking intensities and various roof weights are chosen as parameters. A set of horizontal and vertical earthquake excitations are obtained from previous experimental tests. The motions were created to generate an AC-156 compatible RRS using a spectrum-matching procedure from the MTS program STEX (MTS, 2004). The vertical motion is calculated as the 2/3 horizontal motion.

First, a model with a roof weight of 8 psf (basic configuration weights of 5 psf and additional weights of 3 psf), is subjected to various shaking levels in order to identify the capabilities of the test frame. The parameter selected to characterize the ground motion is the spectral acceleration mapped at short periods, \(S_s \). The target of shaking levels are \(S_s = 3.0g \), \(S_s = 4.5g \), and \(S_s = 6.0g \) by the increment of 1.5g.

The required axial, shear and moment strengths (demands) are calculated and compared with the design (available) strength of each element of the frame according to the Load and Resistance Factor Design (AISC, 2007). The design strength must equal or exceed the required strength \(R_a \) by Equation (3-1). The design strength is calculated as the product of the resistance factor \(\phi \) and the nominal strength \(R_n \) (\(\phi_c P_n \), \(\phi_v V_n \) and \(\phi_b M_n \)). Since SAP2000 ver.11.0.8 does not support calculation of the nominal moment strength \(M_n \) of joists, the \(M_n \) is estimated by Equation (3-2).

The critical elements and stresses are presented in Table 3-5 for the 20 × 20 ft. frame and in Table 3-6 for the 20 × 50 ft. frame. The result indicates that the frame is safe when it is subjected up to the shaking intensity of \(S_s = 4.5g \).

\[
R_a \leq \phi R_n \quad (3-1)
\]

\[
M_n = \sigma_y \times I/c \quad (3-2)
\]

for a single joist, where \(\sigma_y \), \(I \), and \(c \) are the yield strength, moment of inertia, and distance between the neutral axis and the bottom of a joist, respectively. The results also show that a joist
located in the middle of a roof grid is a critical element for the required moment strength, and interior columns in the typical walls are critical for the required axial and shear strength. Figure 3-4 above presents the critical elements on a captured image of an analytical model from SAP2000.

Table 3-5 Analysis Results of Required and Available Strength of Elements (20 × 20 ft.)

<table>
<thead>
<tr>
<th>Critical Frame Description</th>
<th>Axial, P (kips)</th>
<th>Shear, V (kips)</th>
<th>Moment, M (kips-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Strength (Design Capacity)</td>
<td>ΦₚPₚ = 7.1</td>
<td>ΦᵥVᵥ = 10.5</td>
<td>ΦₚMₚ = 406.0</td>
</tr>
<tr>
<td>Pu Required/Available (%)</td>
<td>Vu Required/Available (%)</td>
<td>Mu Required/Available (%)</td>
<td></td>
</tr>
<tr>
<td>Sₛ = 3.0g Max. Required Strength</td>
<td>3.1</td>
<td>5.9</td>
<td>254.0</td>
</tr>
<tr>
<td>Sₛ = 4.5g Max. Required Strength</td>
<td>4.6</td>
<td>8.8</td>
<td>344.2</td>
</tr>
<tr>
<td>Sₛ = 6.0g Max. Required Strength</td>
<td>6.0</td>
<td>11.6</td>
<td>434.3</td>
</tr>
</tbody>
</table>

LRFD Φₚ = 0.9, Φᵥ = 0.7, Φₚ = 0.9
Table 3-6 Analysis Results of Required and Available Strength of Elements (20 × 50 ft.)

<table>
<thead>
<tr>
<th>Critical Frame Description</th>
<th>Axial, P (kips)</th>
<th>Shear, V (kips)</th>
<th>Moment, M (kips-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall-Interior Column, HSS 223/16</td>
<td>Wall-Interior Column, HSS 223/16</td>
<td>Open Web Joist, 18K4</td>
<td></td>
</tr>
<tr>
<td>Available Strength (Design Capacity)</td>
<td>$\phi_c P_n = 7.1$</td>
<td>$\phi_v V_n = 10.5$</td>
<td>$\phi_n M_n = 406.0$</td>
</tr>
<tr>
<td></td>
<td>P_u</td>
<td>Required/Available (%)</td>
<td>V_u</td>
</tr>
<tr>
<td>$S_s = 3.0g$ Max. Required Strength</td>
<td>4.0</td>
<td>57</td>
<td>6.6</td>
</tr>
<tr>
<td>$S_s = 4.5g$ Max. Required Strength</td>
<td>5.9</td>
<td>88</td>
<td>9.8</td>
</tr>
<tr>
<td>$S_s = 6.0g$ Max. Required Strength</td>
<td>7.8</td>
<td>116</td>
<td>13.0</td>
</tr>
</tbody>
</table>

* LRFD $\phi_c = 0.9$, $\phi_v = 0.7$, $\phi_n = 0.9$

Second, a limitation of the amounts of additional mass of ceiling systems is estimated. The roof of a new test frame is designed to have changeable frequencies by additional mass (see Chapter 2.4.1). A Basic Configuration model, whose weight of a roof is 5 psf, is subjected to earthquake excitations for AC-156, shaking intensity of $S_s = 3.0g$, with various additional weight (3.0 psf to 12.0 psf). The analysis results are presented in Table 3-7 for the 20 × 20 ft. frame and in Table 3-8 for the 20 × 50 ft. frame. The first excess of the required strength of moment over the design strength occurs when the weight of a roof is 17.0 psf with 12.0 psf of additional weights for both test frames.
Table 3-7 Analysis Results of Required and Available Strength of Elements (20 × 20 ft.)

<table>
<thead>
<tr>
<th>Critical Frame Description</th>
<th>Axial, P (kips)</th>
<th>Shear, V (kips)</th>
<th>Moment, M (kips-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall-Interior Column, HSS 223/16</td>
<td>Wall-Interior Column, HSS 223/16</td>
<td>Open Web Joist, 18K4</td>
<td></td>
</tr>
<tr>
<td>Available Strength (Design Capacity)</td>
<td>$\phi_cP_n = 7.1$</td>
<td>$\phi_VV_n = 10.5$</td>
<td>$\phi_bM_n = 406.0$</td>
</tr>
<tr>
<td>P_u</td>
<td>V_u</td>
<td>M_u</td>
<td>Required/Available (%)</td>
</tr>
<tr>
<td>Roof Weight: 5.0 psf (Basic Model)</td>
<td>2.5</td>
<td>36</td>
<td>4.3</td>
</tr>
<tr>
<td>Max. Required Strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Weight: 8.0 psf (Add. Weight: 3.0 psf)</td>
<td>3.1</td>
<td>44</td>
<td>5.9</td>
</tr>
<tr>
<td>Max. Required Strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Weight: 11.0 psf (Add. Weight: 6.0 psf)</td>
<td>4.0</td>
<td>56</td>
<td>6.8</td>
</tr>
<tr>
<td>Max. Required Strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Weight: 14.0 psf (Add. Weight: 9.0 psf)</td>
<td>4.6</td>
<td>66</td>
<td>8.0</td>
</tr>
<tr>
<td>Max. Required Strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Weight: 17.0 psf (Add. Weight: 12.0 psf)</td>
<td>5.1</td>
<td>71</td>
<td>10.0</td>
</tr>
<tr>
<td>Max. Required Strength</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* LRFD $\phi_c = 0.9$, $\phi_V = 0.7$, $\phi_b = 0.9$
Table 3-8 Analysis Results of Required and Available Strength of Elements (20 × 50 ft.)

<table>
<thead>
<tr>
<th>Critical Frame Description</th>
<th>Axial, P (kips)</th>
<th>Shear, V (kips)</th>
<th>Moment, M (kips-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall-Interior Column, HSS 223/16</td>
<td>Wall-Interior Column, HSS 223/16</td>
<td>Open Web Joist, 18K4</td>
<td></td>
</tr>
<tr>
<td>Available Strength (Design Capacity)</td>
<td>$\phi_c P_n = 7.1$</td>
<td>$\phi_v V_n = 10.5$</td>
<td>$\phi_b M_n = 406.0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof Weight: 5.0 psf (Basic Model)</th>
<th>Pu</th>
<th>Required/Available (%)</th>
<th>Vu</th>
<th>Required/Available (%)</th>
<th>Mu</th>
<th>Required/Available (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Required Strength</td>
<td>3.5</td>
<td>49</td>
<td>5.4</td>
<td>52</td>
<td>142.1</td>
<td>35</td>
</tr>
<tr>
<td>Roof Weight: 8.0 psf (Add. Weight: 3.0 psf)</td>
<td>4.0</td>
<td>57</td>
<td>6.6</td>
<td>63</td>
<td>254.5</td>
<td>63</td>
</tr>
<tr>
<td>Max. Required Strength</td>
<td>5.1</td>
<td>72</td>
<td>8.8</td>
<td>83</td>
<td>358.5</td>
<td>88</td>
</tr>
<tr>
<td>Roof Weight: 11.0 psf (Add. Weight: 6.0 psf)</td>
<td>5.8</td>
<td>82</td>
<td>9.0</td>
<td>86</td>
<td>388.4</td>
<td>96</td>
</tr>
<tr>
<td>Max. Required Strength</td>
<td>6.3</td>
<td>89</td>
<td>11.0</td>
<td>105</td>
<td>488.5</td>
<td>120</td>
</tr>
</tbody>
</table>

* LRFD $\phi_c = 0.9,$ $\phi_v = 0.7,$ $\phi_b =0.9$
Qualification testing of suspended ceiling systems is usually done using earthquake-like excitations produced by shake table motions generated using spectrum-matching procedures or with suites of motions recorded in past earthquakes. The motion should be representative of the location of the ceiling in the structure. As previously indicated, the motion is amplified by the structural system in which the suspended system is located. Instead of reinventing the testing motion with each new test, standards and recommendations were developed. This chapter revisits the requirements of the standards and suggests ways to improve on the motions which should be used for testing.

4.1 Standard Requirement - Current and Proposed

4.1.1 AC-156 Required Response Spectrum

In the last ten years (Reinhorn, 2000) the qualification testing of suspended ceiling systems has usually been done using earthquake-like excitations produced by shake table motions generated using spectrum-matching procedures recommended by ICC-AC-156 “Acceptance Criteria for Seismic Qualification Testing of Nonstructural Components” (ICC, 2007). The first step in such a procedure is to define a target spectrum or Required Response Spectrum (RRS), which is calculated as a function of the short-period spectral acceleration, S_s, provided by USGS maps for various locations in the US. The AC-156 RRS for horizontal and vertical shaking is presented in Figure 4-1.

The values of the parameters of the spectral acceleration A_{RIG} of a rigid component (assumed to have a frequency, $f \geq 33$ Hz) and that of a flexible component A_{FLX} define the ordinates of the horizontal motion spectra. They are calculated by Equation (1-7) and Equation (1-8). The two equations are repeated here:

$$A_{FLX} = S_{DS} \left(1 + 2 \frac{\tilde{z}}{h}\right) \leq 1.6 S_{DS}$$

(4-1)
\[A_{RIG} = 0.4 \ S_{DS} \ (1 + 2 \frac{z}{h}) \leq 1.2 \ S_{DS} \] \hspace{1cm} (4-2)

where \(z \) is the height above the building base where suspended components are to be installed, and \(h \) is the height of the building. The formulation is compatible with the dynamic amplifications explained in the introduction of this study. \(S_{DS} \) is the design spectral acceleration at short periods and is determined using Section 1613 of the International Building Code (ICC, 2006) as in Equation (4-3):

\[S_{DS} = \frac{2}{3} \ F_a S_S \] \hspace{1cm} (4-3)

where \(F_a \) is a site soil coefficient, and \(S_S \) is the mapped maximum earthquake spectral acceleration at short periods.

The ordinates of the vertical RRS are determined by ICC AC-156 as two-thirds (2/3) of the horizontal RRS as shown in Figure 4-1. Section 6.5.1.2.1 of ICC AC-156 indicates that the parameter \(z \) in Equations (4-1) and (4-2) may be taken as zero for the vertical RRS without much elaboration (i.e. assuming no vertical amplification along the height of the building).
4.1.2 Proposed Vertical Motion for AC-156 Required Response Spectrum

Per ICC-AC-156, the vertical required response spectrum (RRS), which is representative of the floor in the building where the ceiling is suspended, is determined as two-thirds (2/3) of those of the horizontal RRS, as indicated above. However, this requirement should be modified, since the vertical acceleration is not amplified as the horizontal motion. The horizontal acceleration applied at the base is amplified by the function \((1 + 2z/h)\) in Equation (4-1) and (4-2) in order to obtain the required horizontal floor response spectrum as discussed in Chapter 1.1.2.1. At the same time, the vertical motion is not amplified by the “usually” vertically rigid structures. Therefore, this study recommends modifying the required vertical response spectrum (RRS) with no amplification in the vertical direction. Equation (4-1) and Equation (4-2) are modified for the vertical motions eliminating the vertical variation by setting \(z\) to zero:

\[
A_{FLX,V} = \frac{2}{3} S_{DS} \leq 1.6 \left(\frac{2}{3} S_{DS} \right) \tag{4-4}
\]

\[
A_{RIG,V} = 0.4 \left(\frac{2}{3} S_{DS} \right) \leq 1.2 \left(\frac{2}{3} S_{DS} \right) \tag{4-5}
\]

where \(S_{DS}\) is the design spectral acceleration at short periods for the horizontal direction, and the vertical spectral acceleration is determined as two-thirds (2/3) of the horizontal one per ICC AC-156. The proposed vertical RRS without height amplification should be calculated from the horizontal RRS using a multiplier of 0.42 for \(A_{FLX}\) and 0.22 for \(A_{RIG}\), instead of 0.67 \((\approx 2/3)\) for both of them in the current code. For the comparison between the current AC-156 RRS and the proposed RRS, the spectral acceleration demands (represented by \(A_{FLX}\) and \(A_{RIG}\)) are explained in terms of \(\alpha \times S_{DS}\), where \(\alpha\) is the maximum coefficient presented in Table 4-1. The differences between the current AC-156 RRS and the proposed RRS are also presented in Figure 4-2, through Figure 4-4. The y axis in each spectrum represents the spectral acceleration demand in a different form: \(A_{FLX}\) and \(A_{RIG}\) per AC 156 in Figure 4-2, \(S_{DS}\) the design spectral acceleration at short periods in Figure 4-3, and \(S_{S}\) the mapped maximum earthquake spectral acceleration at short periods in Figure 4-4, respectively. The relationships between these parameters were presented in the prior section (see Equations (4-1) to (4-5)).
Table 4-1 Spectral Acceleration Demand per AC-156 in Terms of Multiples (α) of S_{DS}

<table>
<thead>
<tr>
<th></th>
<th>Horizontal</th>
<th>Vert.(current)</th>
<th>Vert.(proposed)</th>
<th>Ver./Hor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1+2\frac{v}{h}$</td>
<td>α</td>
<td>limit</td>
<td>$1+2\frac{v}{h}$</td>
<td>α</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(3)/(2)</td>
</tr>
<tr>
<td>$A_{FLX, \text{top}}$</td>
<td>≤ 3</td>
<td>3.0</td>
<td>1.6</td>
<td>$\leq \frac{2}{3} \cdot 3$</td>
</tr>
<tr>
<td>$A_{FLX, \text{base}}$</td>
<td>1</td>
<td>1.0</td>
<td>1.6</td>
<td>$\frac{2}{3} \cdot 1$</td>
</tr>
<tr>
<td>$A_{RIG, \text{top}}$</td>
<td>≤ 3</td>
<td>1.2</td>
<td>1.2</td>
<td>$\leq \frac{2}{3} \cdot 3$</td>
</tr>
<tr>
<td>$A_{RIG, \text{base}}$</td>
<td>1</td>
<td>0.4</td>
<td>1.2</td>
<td>$\frac{2}{3} \cdot 1$</td>
</tr>
</tbody>
</table>

Spectral Acceleration = $\alpha \times S_{DS}$

Figure 4-2 AC-156 RRS for Horizontal and Vertical Spectral Acceleration Demand (S_o), A_{FLX} and A_{RIG}
Figure 4-3 AC-156 RRS for Horizontal and Vertical Demand in Terms of S_{DS}

Figure 4-4 AC-156 RRS for Horizontal and Vertical Demand in Terms of S_{S}
It should be noted that the current code Section 6.5.1.2.1 of ICC AC-156 indicates that the parameter \(z \) in Equations (4-1) and (4-2) may be taken as zero for the vertical amplification. The statement should not be connected to \(z \), which is a measure of the modal shape (as indicated in Chapter 1.1.2.1). Moreover a specific formulation for the vertical motion should be specified, independent of \(z \) and moreover, for suspended ceilings it must include the local amplification of the horizontal floors diaphragms out-of-plane vibrations (in the vertical direction).

4.1.3 Experimental Evaluation on the Proposed Vertical Motion

4.1.3.1 Shake Table Simulated Motions

Full scale testing was conducted to observe the effects of proposed vertical motions on a test frame and suspended ceiling systems. The series of testing was performed using the existing test frame (16 × 16 ft.) on which a ceiling system was installed. The random multi-frequency seismic simulation tests included tri-axial floor motions that were established using scaled RRS as recommended by ICC AC-156 (ICC, 2007). Table 4-2 lists the full series of tests used for the test specimen.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Target (S_5) (g)</th>
<th>Description of Required Response Spectrum (RRS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.50</td>
<td>AC-156 Horizontal RRS (E-W and N-S) and a current vertical RRS</td>
</tr>
<tr>
<td>2</td>
<td>1.50</td>
<td>AC-156 Horizontal RRS (E-W and N-S) and a proposed vertical RRS</td>
</tr>
<tr>
<td>3</td>
<td>1.75</td>
<td>AC-156 Horizontal RRS (E-W and N-S) and a current vertical RRS</td>
</tr>
<tr>
<td>4</td>
<td>1.75</td>
<td>AC-156 Horizontal RRS (E-W and N-S) and a proposed vertical RRS</td>
</tr>
</tbody>
</table>

The earthquake excitations used for the qualification of the ceiling system were generated according to the guideline of ICC-AC-156 using a spectrum-matching procedure, namely, the “Inverse Response Spectrum Procedure” routine from the program software STEX (MTS, 2004). STEX utilizes industry-standard algorithms for calculation of shock response spectra and inverse shock response spectra. Independent records were generated for each excited degree of freedom: horizontal East-West direction (x), horizontal North-South direction (y), and vertical direction.
(z). ICC-AC-156 requires the Test Response Spectrum (TRS) associated with the earthquake histories used for qualification must envelope the required (or target) response spectrum (RRS) based on a maximum-one-sixth octave bandwidth resolution over the range from 1.3 to 33.3 Hz, or up to the shake table limits.

Figure 4-5 through Figure 4-8 present the horizontal and vertical simulator input acceleration histories created by the spectrum matching procedure and their corresponding TRS for the series of this testing. A damping ratio of 5% and a resolution of 50 lines per octave (8.3 times greater than that required by ICC-AC-156) were used to generate the TRS.
a) Horizontal acceleration history in the X direction (East – West)

b) Horizontal acceleration history in the Y direction (North – South)

c) Vertical acceleration history in the Z direction

d) Test response spectrum (TRS) and the RRS per ICC-AC-156

Figure 4-5 Test Input Motions and Response Spectra for No.1 (current AC-156, $S_s = 1.50\, g$)
Figure 4-6 Test Input Motions and Response Spectra for No.2 (Proposed AC-156, $S_s = 1.50g$)
a) Horizontal acceleration history in the X direction (East – West)

b) Horizontal acceleration history in the Y direction (North – South)

c) Vertical acceleration history in the Z direction

d) Test response spectrum (TRS) and the RRS per ICC-AC-156

Figure 4-7 Test Input Motions and Response Spectra for No.3 (Current AC-156, $S_s=1.75g$)
a) Horizontal acceleration history in the X direction (East – West)

b) Horizontal acceleration history in the Y direction (North – South)

c) Vertical acceleration history in the Z direction

d) Test response spectrum (TRS) and the RRS per ICC-AC-156

Figure 4-8 Test Input Motions and Response Spectra for No.4 (Proposed AC-156, $S_{x} = 1.75g$)
4.1.3.2 Comparison of Simulated Floor (Roof) Motions

The floor motion histories generated using the procedure described in Chapter 4.1.3.1 were used as the input to a shaking table. The horizontal and vertical responses of the shaking table and the test frame were recorded with accelerometers. These responses were recorded for the purpose of comparing the effects of the proposed ICC-AC-156 vertical motion to the ones of the current vertical motion per ICC-AC-156. Accelerometers were placed on the center of the shaking table extension (AEXT), the center of the roof of the frame (AGRD), and the center of the suspension ceiling system (ATIL).

For Test No.1 and No.2 (using the current vertical motion and proposed vertical motion, respectively, for a target spectrum with $S_S = 1.50g$), Figure 4-9 and Figure 4-11 present the tri-axial response motions at the specific locations indicated above (AEXT, AGRD, and ATIL). The response spectra for 5% damping were calculated from the acceleration histories achieved at each location. The response motions at the three locations are also presented in each direction in order to show the amplification of the response when the input motion travels the structure through the path of the motion (AEXT \rightarrow AGRD \rightarrow ATIL) in Figure 4-10 and Figure 4-12 for Test No.1 and No.2, respectively.

For Test No.3 and No.4 (using the current vertical motion and proposed vertical motion, respectively, for a target spectrum with $S_S = 1.75g$), Figure 4-13 and Figure 4-15 present the tri-axial response motions at the specific locations. The response motions at the three locations are also presented in each direction in Figure 4-14 and Figure 4-16 for Test No.3 and No.4, respectively.

For the purpose of comparison between the responses of the current vertical motion and proposed vertical motion, the peak spectral accelerations of each motion are estimated and listed in Table 4-3. The results indicate that the proposed vertical motion generates the roof response smaller by 0.6g (approximately 11% of the current RRS response) and the suspended ceiling grid response smaller by 1.1g (approximately 16% of the current RRS response) for a target spectrum with $S_S = 1.50g$, and the roof response smaller by 0.9g (approximately 16% of the current RRS response) for a target spectrum with $S_S = 1.75g$. The results for Test No.3 and No.4 are presented in Figure 4-14 and Figure 4-16.
response) and the suspended ceiling grid response smaller by 0.8g (approximately 11% of the current RRS response) for a target spectrum with $S_S = 1.75g$.

Table 4-3 Response Peak Spectral Accelerations

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Target S_S (g)</th>
<th>Direction</th>
<th>FLOOR1, S_a (g)</th>
<th>ROOF3, S_a (g)</th>
<th>GRID4, S_a (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.50 (Current Vert.)</td>
<td>X</td>
<td>1.9</td>
<td>5.8</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y</td>
<td>2.1</td>
<td>3.6</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z</td>
<td>1.3</td>
<td>6.0</td>
<td>6.7</td>
</tr>
<tr>
<td>2</td>
<td>1.50 (Proposed Vert.)</td>
<td>X</td>
<td>1.8</td>
<td>5.3</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y</td>
<td>1.9</td>
<td>3.6</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z</td>
<td>0.8</td>
<td>5.4</td>
<td>5.6</td>
</tr>
<tr>
<td>3</td>
<td>1.75 (Current Vert.)</td>
<td>X</td>
<td>2.2</td>
<td>7.0</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y</td>
<td>2.3</td>
<td>3.3</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z</td>
<td>1.5</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>4</td>
<td>1.75 (Proposed Vert.)</td>
<td>X</td>
<td>2.2</td>
<td>6.3</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y</td>
<td>2.3</td>
<td>3.9</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z</td>
<td>1.0</td>
<td>5.7</td>
<td>6.0</td>
</tr>
</tbody>
</table>

1 FLOOR = floor acceleration (center of the shaking table extension, AEXT)
2 S_a = peak spectral acceleration in the response spectrum in the range of 0.1Hz. to 20Hz
3 ROOF = Roof acceleration (center of the roof of the frame, AGRD)
4 GRID = Grid acceleration (center of the grid system, ATIL)
a) Response spectra obtained on the shaking table extension (AEXT)

b) Response spectra obtained on the roof of the frame (AGRD)

c) Response spectra obtained on the suspension system (ATIL)

Figure 4-9 Response Spectra Obtained from the Accelerometers Located on the Three Locations for Test No. 1 (Current AC-156, $S_g = 1.50g$)
a) Horizontal direction (X)

b) Horizontal direction (Y)

c) Vertical direction (Z)

Figure 4-10 Response Spectra for Each Direction for Test No.1 (Current AC-156, $S_s = 1.50g$)
a) Response spectra obtained on the shaking table extension (AEXT)

b) Response spectra obtained on the roof of the frame (AGRD)

c) Response spectra obtained on the suspension system (ATIL)

Figure 4-11 Response Spectra Obtained from the Accelerometers Located on the Three Locations for Test No.2 (Proposed AC-156, $S_S = 1.50g$)
a) Horizontal direction (X)

b) Horizontal direction (Y)

c) Vertical direction (Z)

Figure 4-12 Response Spectra for Each Direction for Test No.2 (Proposed AC-156, $S_s = 1.50g$)
a) Response spectra obtained on the shaking table extension (AEXT)

b) Response spectra obtained on the roof of the frame (AGRD)

c) Response spectra obtained on the suspension system (ATIL)

Figure 4-13 Response Spectra Obtained from the Accelerometers Located on the Three Locations for Test No.3 (Current AC-156, $S_S = 1.75g$)
a) Horizontal direction (X)

b) Horizontal direction (Y)

c) Vertical direction (Z)

Figure 4-14 Response Spectra for Each Direction for Test No.3 (Current AC-156, $S_s =1.75g$)
a) Response spectra obtained on the shaking table extension (AEXT)

b) Response spectra obtained on the roof of the frame (AGRD)

c) Response spectra obtained on the suspension system (ATIL)

Figure 4-15 Response Spectra Obtained from the Accelerometers Located on the Three Locations for Test No.4 (Proposed AC-156, $S_S = 1.75g$)
Figure 4-16 Response Spectra for Each Direction for Test No.4
(proposed AC-156, $S_s = 1.75g$)
4.2 Alternative Floor (Roof) Motion

The earthquake excitations for shake table motions, generated by using the recommendations of ICC-AC-156 (ICC, 2007), were originally developed for seismic evaluation testing of nonstructural components connected at a single point. However, suspended ceiling systems have multiple attachment points to a main structure (e.g., floor or roof). An innovative testing protocol, which accommodates this issue, was suggested by Retamales et al. (2009) and is intended to be used for seismic performance tests of suspended ceiling systems.

This section presents a summary of the proposed test protocol. Retamales et al. (2009) designed a testing protocol for assessing the seismic performance of nonstructural components, systems and equipment, sensitive to the accelerations and/or interstory drifts expected within multistory buildings during seismic shaking. The protocol was mainly developed for use with the University at Buffalo Nonstructural Component Simulator (UB-NCS) and other equipment with similar capabilities. However, the methodology to develop the protocol can be used for experimental seismic qualification of acceleration-sensitive nonstructural components such as suspended ceiling systems, performed using conventional shaking tables. The summary herein focuses on the methodology of the development of the protocol for acceleration sensitive nonstructural components.

A distribution of seismic demands along building height is determined based on the analysis of the continuous beam model (Retamales et al., 2009) shown in Figure 4-17. A multistory building is modeled as a continuous elastic cantilever beam combining flexural and shear beams connected by an infinite number of axially rigid links distributed along its height. This method allows for modeling generic buildings, whose seismic resistant systems consist of either shear walls or moment resistant frames, or a combination of both.
The parameter α, accounting for the relative stiffness of the shear and flexural beams, is calculated as Equation (4-6):

$$\alpha = H \sqrt{\frac{G\alpha}{EI}}$$

where $G\alpha$ and EI denote the shear and flexural rigidities at the base of the structure, respectively, and H is the total height of the system. The damping ratios for primary (all modes) and secondary systems, ζ_p and ζ_s, respectively, were assumed equal to 5% of critical. Floor Response Spectra (FRS), which depend on parameters T_p, T_s, h/H and α, are estimated for acceleration demands of floors using this model where T_p and T_s are fundamental periods of primary structure systems and secondary nonstructural systems, respectively. In order to make a generalized testing protocol independent of structural system (associated to the parameter α) and the period of the structure (given by T_p), a statistical acceleration demand analysis was performed. The results of the analysis were used to obtain the FRS as function of normalized building height. A function $FRS_{Factor}(h/H)$, calculated as the ratio between the peak value (typically observed at $T_s = 0.3$ sec) of the resulting FRS’s along the height of the building and the peak spectral amplitude.
of the Probabilistic Local Seismic Hazard (Gupta and Trifunac, 1998) Ground Response Spectrum, is used to amplify the platform motions and to obtain the target FRS for the protocol. The best fit curve for the $FRS_{Factor} (h/H)$ is given by Equation (4-7):

$$FRS_{Factor} \left(\frac{h}{H} \right) = 1 + 10 \left(\frac{h}{H} \right) - 19.4 \left(\frac{h}{H} \right)^2 + 12.4 \left(\frac{h}{H} \right)^3$$

(4 - 7)

This function is analogous to the empirical triangular amplification function of floor accelerations $(1 + 2 \ h/H)$ included in IBC code (ICC, 2006) and ICC-AC-156 (2007) standard as indicated in Chapter 1.1.2.1.

A proposed qualification testing protocol is developed considering the spectral acceleration amplification factor $FRS_{Factor} (h/H)$, given by Equation (4-6) and is calibrated to induce the same number of “Rainflow” cycles (ASTM, 1997) on acceleration sensitive nonstructural components as would be experienced during real seismic floor motions (Retamales et al., 2008).

Further evaluations and comparisons of the proposed protocol and the AC-156 should be made before the alternative protocol could be adopted.

4.3 Roof Motion Amplification During Testing

The test frame amplifies the roof motion when it is excited by a base (ground) motion due to system flexibility (see Figure 4-18). If T_Y and T_L are response spectra of the command drive (ground) motion of a shake table, then $RM_{V,L}$ and $RC_{V,L}$ are response spectra at the middle and corner of the roof, respectively, which are calculated using the acceleration history achieved at those locations. The RM_V, the vertical response spectrum in the middle of a roof grid, represents response of single degree of freedom components that can be mounted on or hanged from the roof grid.
The response spectra of the roof motion in the horizontal and vertical directions are expressed as Equation (4-8) and Equation (4-9). RM_L is assumed to be equal to RC_L since the roof of the testing frame is “usually” rigid horizontally.

$$RM_L = \alpha_{RC_LT_L} \cdot T_L$$ \hspace{1cm} (4 - 8)$$

$$RM_V = \alpha_{RM_VRC_V} \cdot RC_V = \alpha_{RM_VRC_V} \cdot \alpha_{RC_VTV} \cdot T_V$$ \hspace{1cm} (4 - 9)$$

where $\alpha_{RC_LT_L}$ and α_{RC_VTV} denote the amplification factors between the roof corner and the table in the horizontal and vertical directions, respectively. $\alpha_{RM_VRC_V}$ is the amplification factor between the roof middle and corner in the vertical direction. If the columns are rigid vertically, $\alpha_{RC_VTV} = 1.0$, and if the columns are flexible, $\alpha_{RC_VTV} \geq 1.0$. Also, if a floor (roof) is rigid vertically, $\alpha_{RM_VRC_V} = 1.0$, and if a floor (roof) is flexible, $\alpha_{RM_VRC_V} \geq 1.0$.

Vertical Acceleration Response Spectrum (RM_V) was developed using the achieved acceleration history at the center point of a roof grid from SAP2000 with random motions (AC-156 spectrum compatible for $S_s = 3.0g$). The developed analytical model of 20ft. by 20ft. (see Chapter 3) was used for this analysis.
The results indicate that vertical input table motions, generating the RRS, have major influence on roof motions and suspended systems to the roof (see Figure 4-19, Figure 4-20, and Figure 4-21). The proposed vertical RRS recommended in this work (see Chapter 4.1.2) generates roof response smaller by 5.7g, approximately 38% of that obtained by the current motion per AC-156.

Figure 4-19 shows the variation of RM_V by different input motions (current input motions and proposed input motions). The difference between the average peak spectral accelerations obtained for various weights of roofs is 5.7g. Figure 4-20 and Figure 4-21 present the variation of RM_V due to several additional suspended ceiling masses marked as a weight of roof (1 psf (CE1), 2 psf (CE2), 3 psf (CE3), 4 psf (CE4), and 5 psf (CE5)), using the current and the proposed AC-156 simulated input motions. The variation of the peak spectral acceleration using the additional ceiling mass is approximately ± 5% for the both input motions.

The Vertical Acceleration Response Spectra (RM_V) have strong amplification if the frame has vertical fundamental frequency, f_z, in the range of 10.0-11.0 Hz (i.e. the basic frame, having the fundamental frequency of 10.2 Hz). The peak amplitude of the RM_V for the basic frame is 20% greater than the average peak spectral accelerations of the various weight additions, CE1-CE5, as Figure 4-19 indicates. The authors consider that this amplification is a result of the unmatched "desired" input motions. The future tests however, will be designed to compensate for this error through control with the signal compensation procedure developed by the authors (see also Maddaloni et al., 2009b).

To observe further the variation of RM_V using different input motions, another dynamic analysis to the test frame from SAP2000 was performed using FEMA 461/ATC58 shake table testing protocol (FEMA, 2007), having the vertical peak spectral acceleration (S_o) \approx 1.0g (this peak S_o is equivalent to the one of the proposed AC-156 vertical RRS for S_s \approx 2.25g), as shown in Figure 4-22. The results are shown in Figure 4-23, indicating the peak amplitude of the RM_V of a basic frame is 12% less than the average peak S_o of the CE1-CE5 (in contrast to the result above for the proposed AC-156 RRS of 20% greater RM_V of a basic frame). These results present that variation of RM_V is mainly influenced by floor “input motions.”
\[S_a = \alpha \cdot S_{OS} = \alpha \cdot F_a \cdot 2/3 \cdot S_5, \quad F_a = 1.0, \quad S_5 = 3.0 \text{g} \]

\[\text{avg.}^c \approx 15.1 \text{g} \]

\[\text{avg.}^p \approx 9.4 \text{g} \]

\[5.7 \text{g}/15.1 \text{g} \approx 38\% \]

\(c^* \): denotes the current input motion or the corresponding response,
\(p^* \): denotes the proposed input motion or the corresponding response.

Figure 4-19 Variation of Vertical Acceleration Response Spectra (R.S.) using Different Input Motions: Effects of the Proposed Input Motion

Figure 4-19 presents the variation of vertical acceleration response spectra (\(RM_v \)) due to two different vertical input motions (\(T_{v,c} \) driven to simulate the current AC-156 \(RRS_{v,c} \) and \(T_{v,p} \) driven to simulate the proposed \(RRS_{v,p} \)). The responses obtained using the two input motions are presented: \(\text{ave.}^c \) and \(\text{ave.}^p \) represent the average of the responses obtained from five cases having different weight of ceilings, \(\text{Basic}^c \) and \(\text{Basic}^p \) represent the response obtained from the basic frame (explained in Chapter 2.4).
\[Sa = \alpha \cdot S_{dp} = \alpha \cdot F_a \cdot 2/3 \cdot S_d \quad F_a = 1.0, \quad S_d = 3.0 \text{ g} \]

\(c^* \): denotes the current input motion or the corresponding response,
\(p^* \): denotes the proposed input motion or the corresponding response.

Figure 4-20 Variation of Vertical R.S. Acceleration Using the Current AC-156 Simulated Input Motion: Effects of Various Ceilings

Figure 4-20 presents the variation of vertical acceleration response spectra \((R_{M_v})\) due to various weight of a roof. \(T_{v,c} \) driven to simulate the current AC 156 \(R_{RS_{v,c}} \) was used as the input motion. The responses for five different ceiling weights - 1 psf (CE1), 2 psf (CE2), 3 psf (CE3), 4 psf (CE4), and 5 psf (CE5) - and their average, \(\text{ave}^* \) are presented in addition to the responses of the bare frame \(\text{bare}^* \) and the basic frame \(\text{Basic}^* \) (explained in Chapter 2.4).
c*: denotes the current input motion or the corresponding response,
p*: denotes the proposed input motion or the corresponding response.

Figure 4-21 Variation of Vertical R.S. Acceleration Using the Proposed AC-156 Simulated Input Motion: Effects of Various Ceilings

Figure 4-21 presents the variation of vertical acceleration response spectra (RM_v) due to various weights of a roof. The "drive signal" $T_{v,p}$ to simulate the proposed $RRS_{v,p}$ was used as the input motion. The responses from the five different ceiling weights - 1 psf (CE1), 2 psf (CE2), 3 psf (CE3), 4 psf (CE4), and 5 psf (CE5) and their average ave_p are presented in addition to the responses of the bare frame $Bare_p$ and the basic frame $Basic_p$ (explained in Chapter 2.4).
Figure 4-22 Acceleration Response Spectra (R.S.) for Recommended Input Motions in Three Directions: FEMA461/ATC58

Figure 4-23 Variation of Vertical R.S. using FEMA461/ATC58 Recommended Input Motions: Effects of Input Motions
4.4 Design of Test Roof Motion

The test frame is designed to be used with shake table motions programmed to deliver desired “floor motions” at the roof level. The “shake table command drive” in three directions is modified by a compensation procedure developed by the authors in order to generate and adjust the response of the roof, based on dynamic properties of the frame (Maddaloni et al., 2009b).

A shake table “command drive” can be designed to deliver alternatively damped motions as desired by the testing criteria. There is no need to add damping to the test frame. The “command drive,” compensated for the frame characteristics, is designed to reject higher modes effects of the frame structure (see Chapter 5).
CHAPTER 5
COMPENSATION PROCEDURE FOR SHAKE TABLE SIMULATION

As shown in the previous chapter, the response spectrum delivered at the roof level of the frame is distorted by the dynamics of the frame. Moreover, some of the distortions are a result of the imperfect behavior of the shake tables themselves. This chapter describes a “Compensation Procedure” to produce the Required Response Spectrum (RRS) corresponding to input acceleration histories at any desired location of a test frame unaffected by the dynamics of the shake table and the test frame. The chapter consists of two main parts: the first part (Section 5.1 through 5.4) presents the mathematical formulation of the compensation procedure, and the second part (Section 5.5) presents an experimental verification for the compensation procedure. The first part of this chapter is largely based on the team developments originally presented by Maddaloni et al. (2009b). The developments are repeated here for the sake of completeness.

5.1 Introduction

Shake table systems are essential tools in experimental earthquake engineering. They provide effective ways to subject structural components, substructures, or entire structural systems to dynamic excitations similar to those induced by real earthquakes, as well as to test nonstructural elements. In general, components of shake tables can be grouped into three sub-systems: mechanical, hydraulic, and electronic categories. Typically, platform and actuators are included in the mechanical category; pumps, accumulators and servo-valves are included in the hydraulic category; controller and feedback sensors are included in the electronic category (Ozcelik et al., 2008).

The table (or platform) supports the specimen during the test. It is constructed to provide high stiffness with minimum weight and typically consists of a rectangular or square platform able to reproduce up to six degrees of freedom (6-DOF) motions by servo-hydraulic actuators.

The actuators apply the force necessary to create the desired table movement during seismic testing. Linear Differential Transducers (LDT), or the equivalent, are usually mounted in each
actuator to provide an electrical feedback signal and to indicate the actuator piston rod position. The actuators are equipped with servo-valves that control the direction and the amount of fluid flow to the actuators. The servo-valve ports the fluid provided by the hydraulic power system, into the appropriate side of the actuator chambers. This causes the piston to move the actuator arm in the desired direction.

The control system monitors and generates program command and feedback signals for control of the test system. Generally, the control is the key element of the whole system and one of the most difficult technical challenges for mechanical engineers (Clark, 1992). The controller provides the servo-valve command in order to obtain a specific position of the actuator and finally the motion of the platform to reproduce earthquake accelerograms.

However, reproduction of a dynamic signal is known to remain imperfect (Rinawi and Clough, 1991). The degree of distortion in signal reproduction depends on several factors such as physical system parameters (e.g., compressibility of oil column in the actuator chamber, oil leakage through the actuator seals, servo-valve time delay, etc.) and dynamic characteristics of the test structure (Conte and Trombetti, 2000). To obtain the best fidelity reproduction, a compensation closed-loop control is used. In general, a closed-loop control consists of comparing a command signal (generated by a program source) with a feedback signal. The difference between the feedback measurement and the set-point of the command signal is the error “e.” The polarity and magnitude of the error signal, causes the servo-valve spool to open in a direction leading to the desired actuator response. As the command input changes, the command-feedback comparison continuously generates error signals that drive the servo-valve to create the desired actuator response. When the command and the feedback are equal, the error is reduced to zero, the servo-valve spool closes, and the actuator does not move (MTS, 2004).

Starting from these concepts, this chapter focuses on shake table simulations using an “open loop” compensation model based on transfer functions (i.e. the frequency domain ratios of the output structural response to the input base motion). In particular, in the first part, the analytical model and the compensation system of a uni-axial shake table is presented considering an equivalent single degree of freedom (SDOF). In this case the compensation transfer function is determined
between the desired (or target) motion and the achieved table motion. Subsequently, a similar input-output mathematical model for a multi degree of freedom (MDOF) system is presented. Finally, the concept of open-loop compensation was implemented and verified in an experiment at the Structural Engineering and Earthquake Simulation Laboratory (SEESL) - http://seesl.buffalo.edu/ - at University at Buffalo using a six degrees-of-freedom (6-DOF) shake table. As a first step, a well known global procedure was reformulated for the compensation of the table motion’s distortions due to the servo-hydraulic system. Subsequently the same concept was extended to the table-structure system (i.e. with the testing frame in this study) to adjust the shake table input in order to achieve a desired response spectrum at any floor of the specimen. Such implementation is presented further in this paper.

5.2 Ground Motion for Required Response Spectrum

The primary use of a shake table is to simulate the motion of the ground or location in a structure. However, the reproduction of a dynamic signal, due to several factors (e.g., time delay in the servovalve response, compressibility of the actuator fluid, oil leakage through the actuator seals, influence of the test specimen) can be imperfect. High fidelity response can be obtained using compensated motion as described below.

For this purpose, the development from basic principles of a transfer function able to capture the principal dynamic characteristics of uni-axial shake table system is presented. The objective of this analytical model is to mathematically represent the input-output relationship between desired (or commanded) and achieved absolutes table motions. While the analytical model is presented for a uni-axial system, the same procedure can be easily reformulated to multi-axial systems. The model presented herein can be interpreted by visualizing the shake table system as a single degree of freedom (SDOF) system (as shown in Figure 5-1).
Equation (5-1) below shows the dynamic equilibrium for the motion of a SDOF system [6], excited by horizontal base acceleration \ddot{x}, expressed in the complex frequency domain by using Fourier Transform*.

$$-m\omega^2 y(\omega) + i\omega c y(\omega) + k y(\omega) = -m\ddot{x}(\omega) \quad (5-1)$$

In the above equation, m and $y(\omega)$ represent the mass and the corresponding complex displacement of the platform; k and c are the equivalent stiffness and viscous damping of the servo-hydraulic system, and i is $\sqrt{-1}$.

Solving Equation (5-1) for the displacement $y(\omega)$, it results in:

$$y(\omega) = \frac{-m\ddot{x}(\omega)}{-m\omega^2 + i\omega c + k} \quad (5-2)$$

As shown in Figure 5-1, for the equivalent SDOF system and in the time domain, the absolute acceleration $\dddot{y}(t)$ with respect to an inertial reference system (laboratory ground) is simply obtained as the sum of two accelerations:

$$\dddot{y}(t) = \ddot{y}(t) + \ddot{x}(t) \quad (5-3)$$

* Fourier Transform is an operation that converts one function of a real variable into a complex function. The new function, often called the frequency domain representation of the original function, describes which frequencies are included in the original function; $\omega=2\pi f$ is the circular frequency (in rad/sec) and f is the cyclic frequency (in hertz); $i=\sqrt{-1}$
Converting Equation (5-3) in the frequency domain, it results in:

\[
\ddot{a}(\omega) = -\omega^2 y(\omega) + \ddot{x}(\omega)
\]

(5-4)

Substituting Equation (5-2) into Equation (5-4) and performing some adjustments, the absolute acceleration \(\ddot{a}(\omega)\) can be represented as follows:

\[
\ddot{a}(\omega) = \left(\frac{i\omega c + k}{-m\omega^2 + i\omega c + k} \right) \ddot{x}(\omega)
\]

(5-5)

The transfer function \((H)\) is defined as the ratio of the structural response to an input base motion in the frequency domain:

\[
\frac{\ddot{a}(\omega)}{\ddot{x}(\omega)} = H = \left(\frac{i\omega c + k}{-m\omega^2 + i\omega c + k} \right)
\]

(5-6)

In a shaking table test, the input base motion \(\ddot{x}\) and the structural response \(\ddot{a}\) are, respectively, called “drive” table motion \((x_{\text{drive}})\) and “achieved” table motion \((y)\):

\[
\frac{\text{achieved table motion}}{\text{drive table motion}} = \frac{\ddot{y}(\omega)}{\ddot{x}_{\text{drive}}(\omega)} = H_t = \left(\frac{i\omega c + k}{-m\omega^2 + i\omega c + k} \right)
\]

(5-7)

The transfer function of the table “\(H_t\)” represents the degree of distortion in signal reproduction of a desired motion due to the mechanical and servo-hydraulic system. As indicated above, it depends on many factors such as the oil compressibility, oil leakage, servovalve time delay, etc. (Ozcelik, 2008 and Conte, 2000) that can be obtained from identifications. To obtain the best fidelity reproduction of desired motion, a compensated drive motion can be applied.

In Figure 5-2 this concept is shown as a schematic diagram. The “desired,” or often called the “target,” motion \(\ddot{x}\), represents the start point of the compensation while the “achieved” motion
\(\bar{y} \) is the end point. The command signal applied to the table for the shaking is indicated as "drive" motion, \(x_{drive} \).

According to this scheme and Equation (5-7), a different command signal (\(x_{drive} \)) should be applied in order to achieve a response motion equal to the desired motion \(\bar{x} \) as shown in the following equation:

\[
\text{if } \quad x_{drive} = H_t^{-1} \bar{x} \quad \text{then} \quad \bar{y} = H_t x_{drive} = H_t H_t^{-1} \bar{x} \equiv \bar{x}
\]

(5-8)

where \(H_t \) and \(H_t^{-1} \) are the transfer and the inverse transfer functions of the table, respectively. Therefore, the "drive" motion is calculated multiplying the "desired" or "target" motion \(\bar{x} \) by the inverse transfer function of the table. In practical applications using the compensated drive as input command for the shake table, the achieved motion (\(\bar{y} \)) could not perfectly match the desired motion (\(\bar{x} \)) due to non-linearity of the servo-hydraulic system (Conte and Trombetti, 2000). As shown in Figure 5-2, an error \(\varepsilon = \bar{y} - \bar{x} \) is calculated and an iteration procedure (dashed line) is used to improve the compensation. The block diagram shows that the iterations are stopped when the error is smaller than a predefined tolerance (\(\varepsilon < \tau \)); it means that this is an acceptable reproduction of the desired motion. In the same figure, in case of compensation without iterations, \(\bar{x}^* \) is same as \(\bar{x} \); in case of iterations \(\bar{x}^* \) includes the desired motion \(\bar{x} \) and the error \(\varepsilon \) (\(\bar{x}^* = \bar{x} + \varepsilon \)).
5.3 Required Response Spectrum in Structures

In the experimental evaluation of architectural or nonstructural component, it is often necessary to produce a desired or target spectrum at a specified position in the structure. The previous compensation approach can be generalized for a multi-degree of freedom (MDOF) system (Bracci, 1992), which represents the specimen in a shake table test. For simplicity, the MDOF is represented in this development as a simple plane frame as shown in Figure 5-3.

Equation (5-9) below shows the general equation of motion for a MDOF system excited by a base acceleration $\ddot{x}(t)$:

$$
[M]\{\ddot{y}(t)\} + [C]\{\dot{y}(t)\} + [K]\{y(t)\} = -[M]\{r\}\ddot{x}(t)$$ \hspace{1cm} (5-9)

where $[M]$, $[K]$, $[C]$ are, respectively, the mass, stiffness, viscous damping matrix of the structure-specimen and $\{y(t)\}$, $\{\dot{y}(t)\}$, $\{\ddot{y}(t)\}$, $\{r\}$ are the relative displacement, velocity, acceleration, and influence vector time history (Chopra, 2007).
The relative displacement vector \(\{ y(t) \} \) can be expressed in modal form by the product of the modal shape matrix \([\Phi] \) and the modal displacement vector \(\{ p(t) \} \) of the structure as follows:

\[
\{ y(t) \} = [\Phi] \{ p(t) \} \tag{5-10}
\]

Therefore Equation (5-9) can be expressed in modal form as follows:

\[
[M][\Phi]\{\ddot{p}(t)\} + [C][\Phi]\{\dot{p}(t)\} + [K][\Phi]\{p(t)\} = -[M]\{r\}\ddot{x}(t) \tag{5-11}
\]

Pre-multiplying Equation (5-11) by the transpose of the k-th mode shape \(\{ \phi_k \}^T \) and using the modal shape orthogonality properties it is possible to obtain uncoupled equation of motion for the k-th mode of vibration as:

\[
M_k^* \cdot \ddot{p}_k(t) + C_k^* \cdot \dot{p}_k(t) + K_k^* \cdot p_k(t) = -\{\phi_k\}^T[M]\{r\}\ddot{x}(t) \tag{5-12}
\]

where \(M_k^* = \{\phi_k\}^T[M]\{\phi_k\} \) is the k-th modal mass, \(C_k^* = \{\phi_k\}^T[C]\{\phi_k\} \) is the k-th modal viscous damping factor and \(K_k^* = \{\phi_k\}^T[K]\{\phi_k\} \) is the k-th modal stiffness.
Assuming that $K^*_k / M^*_k = \bar{\omega}_k^2$ ($\bar{\omega}_k$ is the k-th circular frequency) and $C^*_k / M^*_k = 2 \bar{\xi}_k \bar{\omega}_k$ ($\bar{\xi}_k$ is the k-th damping ratio), Equation (5-12) can be represented as follows:

$$\ddot{p}_k (t) + 2 \bar{\xi}_k \bar{\omega}_k \dot{p}_k (t) + \bar{\omega}_k^2 p_k (t) = -\{\phi_k\}^T \left[\frac{M}{M^*_k}\right] \ddot{x}(t) \quad (5-13)$$

Transforming Equation (5-13) to the frequency domain (by Fourier Transform) it results:

$$-\omega^2 p_k (\omega) + 2i \omega \bar{\xi}_k \bar{\omega}_k p_k (\omega) + \bar{\omega}_k^2 p_k (\omega) = -\{\phi_k\}^T \left[\frac{M}{M^*_k}\right] \ddot{x}(\omega) \quad (5-14)$$

Solving in respect to $p_k (\omega)$:

$$p_k (\omega) = \frac{1}{\omega^2 - 2i \omega \bar{\xi}_k \bar{\omega}_k} \left\{\frac{\{\phi_k\}^T \left[\frac{M}{M^*_k}\right]}{\{\phi_k\}^T \left[\frac{M}{M^*_k}\right] \{\phi_k\}} \ddot{x}(\omega) \right\} \quad (5-15)$$

The absolute acceleration $\dddot{x}(t)$ can be represented (in time domain) as follows:

$$\{\dddot{x}(t)\} = \{\dddot{y}(t)\} + \ddot{x}(t)\{I\} \quad (5-16)$$

where I is a vector of units. Substituting Equation (5-10) into Equation (5-16) and transforming to the frequency domain, the absolute acceleration becomes:

$$\{\dddot{x}(\omega)\} = -\omega^2 \left[\Phi\right] \{p(\omega)\} + \ddot{x}(t)\{I\} \quad (5-17)$$

Pre-multiplying Equation (5-17) by $\{\phi_k\}^T \left[\frac{M}{M^*_k}\right]$ and using the modal orthogonality properties it results:

$$\{\phi_k\}^T \left[\frac{M}{M^*_k}\right] \{\dddot{x}(\omega)\} = -\omega^2 \{\phi_k\}^T \left[\frac{M}{M^*_k}\right] \left[\Phi\right] \{p(\omega)\} + \{\phi_k\}^T \left[\frac{M}{M^*_k}\right] \{r\} \ddot{x}(\omega) \quad (5-18)$$

$$\zeta_k (\omega) = \{\phi_k\}^T \left[\frac{M}{M^*_k}\right] \{\dddot{x}(\omega)\} = -\omega^2 M^*_k \cdot p_k (\omega) + \{\phi_k\}^T \left[\frac{M}{M^*_k}\right] \{r\} \ddot{x}(\omega) \quad (5-19)$$
where $\zeta_k(\omega)$ is the k-th modal absolute acceleration. Therefore Equation (5-14) can be rewritten as:

$$\zeta_k(\omega) + p_k(\omega)M_k' \left(2i\omega \bar{\xi}_k + \bar{\omega}_k^2 \right) = 0$$ \hspace{1cm} (5-20)

or:

$$\zeta_k(\omega) = -p_k(\omega)M_k' \left(2i\omega \bar{\xi}_k + \bar{\omega}_k^2 \right)$$ \hspace{1cm} (5-21)

Substituting Equation (5-15) into Equation (5-21), the $\zeta_k(\omega)$ absolute k-th modal acceleration can be represented as follows:

$$\zeta_k(\omega) = \frac{\left(2i\omega \bar{\xi}_k + \bar{\omega}_k^2 \right)}{-\omega^2 + 2i\omega \bar{\xi}_k + \bar{\omega}_k^2} \{\phi_k\}^T [M] \{r\} \ddot{x}(\omega)$$ \hspace{1cm} (5-22)

Considering the modal superposition, the absolute j-th acceleration can be expressed as follows:

$$\ddot{a}_j(\omega) = \sum_{k=1}^{n} \left[\phi_k^j \zeta_k(\omega) \right] = \sum_{k=1}^{n} \left[\phi_k \frac{\left(2i\omega \bar{\xi}_k + \bar{\omega}_k^2 \right)}{-\omega^2 + 2i\omega \bar{\xi}_k + \bar{\omega}_k^2} \{\phi_k\}^T [M] \{r\} \right] \ddot{x}(\omega)$$ \hspace{1cm} (5-23)

where k is the k-th vibration mode; j is the j-th degree of freedom; $\bar{\omega}_k$ and $\bar{\xi}_k$ are the circular frequency and damping ratio relative to the k-th vibration modes.

The acceleration transfer function, defined by the ratio of the output structural response to an input base motion in the frequency domain is therefore:

$$H_{s,j}(\omega) = \frac{\ddot{a}_j(\omega)}{\ddot{x}(\omega)} = \sum_{k=1}^{n} \left[\phi_k \frac{\left(2i\omega \bar{\xi}_k + \bar{\omega}_k^2 \right)}{-\omega^2 + 2i\omega \bar{\xi}_k + \bar{\omega}_k^2} \{\phi_k\}^T [M] \right]$$ \hspace{1cm} (5-24)
In a shaking table test, the input base motion to the structure \(\dot{x} \) and the structural response \(\ddot{a}_j \) represent the *achieved* shake table motion discussed in the previous section and the *achieved* structure response at the j-th floor. The transfer function “\(H_{s,j} \)” indicates the degree of amplification of the base motion due to the dynamic characteristics of the system for the j-th floor of the structure.

In a similar fashion described in the previous section, the concept of signal compensation can be applied in order to match the response to a target motion in the structure. As shown in Figure 5-4, the *desired* motion at j-th floor (\(\bar{x} \)) represents the start point of the compensation model while the *achieved* motion (\(\bar{y} \)) is the end point. The base motion (\(x_{\text{base}} \)) represents the effective movement of the shake table and it can be much different than the *desired* motion.

![Figure 5-4 Schematic Diagram of Compensated Simulation Motion for the Structure (Dashed Line Indicates Possible Iterations) (reproduced from Maddaloni et al., 2009b)](image)

According to this scheme and Equation (5-24), if the target is determining the desired base motion (\(x_{\text{base}} \)) in order to achieve a response motion equal to the desired \(\bar{x} \), at the j-th floor of the structure (\(y_j \)), the following is required:

\[
\text{if } x_{\text{base}} = H_{s,j}^{-1} \bar{x} \quad \text{then} \quad y_j = H_{s,j} \cdot x_{\text{base}} = H_{s,j} \cdot H_{s,j}^{-1} \cdot \bar{x} \equiv \bar{x} \quad (5-25)
\]

where \(H_{s,j} \) and \(H_{s,j}^{-1} \) are the transfer and inverse transfer function referred to the j-th floor of the structure. In practical applications the inverse transfer function is determined from identification.
with associated uncertainties due to nonlinearities in the structure and imperfections in the identification process. Therefore, the achieved motion (\tilde{y}) cannot match perfectly the desired motion (\tilde{x}). In this case, as shown in Figure 5-4, an error $\varepsilon = \tilde{y} - \tilde{x}$ is calculated and an iteration (dashed line) can be performed until the error is smaller than an acceptable tolerance ($\varepsilon < \tau$). In the same figure, in case of compensation without iterations, \tilde{x}^* is identical to \tilde{x}; in case of iterations \tilde{x}^* includes the desired motion \tilde{x} and the error ε ($\tilde{x}^* = \tilde{x} + \varepsilon$).

5.4 Required Floor Response Spectrum

The concepts mentioned above were implemented in a physical experiment performed in the Structural Engineering and Earthquake Simulation Laboratory (SEESL) at the University at Buffalo using a 7m x 7m - 6DOFs shake table (Figure 5-5-left) and a test frame structure used for qualification tests of suspended ceilings (Badillo et al., 2007). The target is to simulate the required (or target) floor response spectrum (FL-RRS) at the top corner of a test frame.

In this case the compensation concerns both the table and the steel frame above it (i.e. the structure). The longitudinal (East-West), the lateral (North-South) and the vertical displacements at the south-west corner are assumed as degrees of freedom for compensation (Figure 5-5-right). The position of the accelerometers, used to record the accelerations in the tri-axial directions during the shaking, is indicated in Figure 5-5 (red circle).
Figure 5-5 Experimental Implementation: Compensation for a Test Frame (reproduced from Maddaloni et al., 2009b)

The concept of open loop compensation for the system table-structure is extended from previous formulations and shown as schematic diagram in Figure 5-6.

Figure 5-6 Schematic Diagram of Shake Table Simulation of a Required Floor Response Spectrum (Dashed Line Indicates Possible Iterations)
The *desired* floor (or roof) motion (*target* \bar{x}_{u}) is the start point of the compensation model, while the *achieved* structure motion (\bar{y}_{s}) is at the end point.

For the purpose of this study a *desired* motion is derived from the AC-156 testing standard for qualification testing of nonstructural components using shake tables (ICC, 2007). According to this standard, the shape and the levels of required response spectra (RRS, $S_r = 1.75\,g$) have been assigned*. The required response spectrum for the vertical direction (RRS, vert) is obtained as two-thirds of the horizontal component amplitude (RRS, hor).

Three time dependent functions have been generated subsequently using an accelerogram simulation program, STEX (MTS, 2004), able to match a specified required response spectrum for each direction of shaking. These acceleration functions represent the uncompensated desired table motions (*target* \bar{x}_{u}). The table transfer function ($H_{t,\text{stex}}$) between the *achieved* and *desired* table motions is derived also by STEX (shown in the internal box in the Figure 5-6). The *drive* table motion (x_{drive}) is calculated by multiplying the *desired* table motion by the inverse table transfer function ($H_{t,\text{stex}}^{-1}$). Additionally, the table transfer function (H_t) was derived to generate the compensated desired table motion, representing the imperfection of the internal compensation system produced by STEX.

The plot of the RRS and the response spectra of the *desired* (*target* \bar{x}_{u}) and the *achieved* (ACHTBL \bar{y}_{t}) table motions as recorded on the platform are shown in Figure 5-7.

* Shape and magnitude of a RRS is based on the normalized response spectra shown in Figure 1 of section 6.5 of the AC-156 and on the parameters specified in section 4.3 of the same code.
The difference between the spectrum of the *achieved* and *target* table motions is an indicator of the degree of distortion in signal reproduction. As a measure of distortion of the response spectra of the achieved table signals from the required standard spectrum, a δ factor has been calculated (Table 5-1). The definition of δ (Iervolino et al., 2008) is given in Equation (5-26).
below, where $RRS(f_i)$ is the ordinate of required response spectrum corresponding to the frequency f_i; $RS(f_i)$ is the ordinate of the response spectrum obtained from the achieved table motion at the same frequency; and N is the number of values within the band of frequency assumed as base of analyses (1-30 Hz).

A response spectrum with a low δ value means an achieved motion which is well approximating the desired.

$$\delta = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{RRS(f_i) - RS(f_i)}{RRS(f_i)} \right)^2} \quad (5-26)$$

The degree of distortion in signal reproduction assumes, for the achieved motions, similar values for the three directions of shaking with an average of 11%, as shown in Table 1. In the same table, the values of δ for the spectra obtained from the target table motions are also indicated with an average of 10.6% for sake of comparison.

<table>
<thead>
<tr>
<th>δ</th>
<th>Target table motion</th>
<th>Achieved table motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>0.096</td>
<td>0.102</td>
</tr>
<tr>
<td>Lateral</td>
<td>0.110</td>
<td>0.109</td>
</tr>
<tr>
<td>Vertical</td>
<td>0.112</td>
<td>0.119</td>
</tr>
<tr>
<td>Average</td>
<td>0.106</td>
<td>0.110</td>
</tr>
</tbody>
</table>

To fit better the RRS, a compensated target motion should be applied. According to Equation (5-8), a new target table motion can be obtained by the compensation procedure described above. As schematically illustrated in Figure 5-8, the transfer function for the shake table (H_t) is obtained from the ratio of the achieved motion recorded on the table (achieved table motion) to the drive table motion in the frequency domain:

$$H_t = \frac{\text{achieved table motion}}{\text{drive table motion}} \quad (5-27)$$
The degree of distortion in signal reproduction can be represented in graphical way as shown in Figure 5-9. The transfer functions in the three directions of shaking are shown with their magnitude and phase. The figures show a good correlation between target and achieved signals after compensation in terms of magnitude (values approximately equal to 1) for a wide range of frequency. A lower correlation appears in terms of phase.

Figure 5-8 Schematic Representation of the Transfer Function Concept for the Table (H_t) and Structure (H_s) (reproduced From Maddaloni et al., 2009b)

Figure 5-9 Magnitude (top) and Phase (bottom) of Table Transfer Functions
The same concept of transfer function can be applied for the structure (Hs). The structure transfer function defined by the ratio of the achieved motion recorded at a specific point in the tested specimen (structure) to the achieved table motion providing the input to the structure (Figure 5-8):

\[H_s = \frac{\text{achieved structure motion}}{\text{achieved table motion}} \quad (5-28) \]

The transfer functions at the roof level of the steel structure used during the test performed at SEESL at University at Buffalo (Figure 5-5) are shown in Figure 5-10. The degree of dynamic amplification of the signal in respect to the one recorded at the base, on the table, is shown for all directions of motion. No considerable amplification is present for frequencies below ~5 Hz. At a frequency of ~20 Hz, the magnitude of Hs reaches largest values (more than 4) for longitudinal and lateral directions of shaking (Figure 5-10 left). The same degree of distortion appears in terms of phase.

![Figure 5-10 Magnitude and Phase of the Structure Transfer Functions](image-url)
If the target is the best fit of the response spectrum of desired signal at the roof level, a shake table compensated simulation of the required floor response spectrum can be implemented. According to the block diagram of Figure 5-6, it means to modify the desired motion by multiplying it with the inverse transfer function of table \((H_t^{-1})\) and structure \((H_s^{-1})\), to produce the drive command. Due to nonlinearity of the system table-structure, the achieved motion \((\bar{y})\) could not perfectly match the desired \((\bar{x})\). In this case, as shown in Figure 5-6, an error \(\epsilon = \bar{y} - \bar{x}\) was calculated and the iteration (dashed line) became necessary. The block diagram shows that when the error is smaller than the tolerance \((\epsilon < \tau)\) then the iterations are stopped, which means that an acceptable reproduction of the desired motion was obtained. For the iteration, a new transfer function \(H_{se}\) between the initial compensated achieved roof motion and the desired table motion is derived. The new compensated drive motion \((\bar{x}_{C,1})\) is calculated by the multiplication of the initial compensated drive motion \((\bar{x}_{C,0})\) by the inverse transfer function \((H_{s,e}^{-1})\).

The response spectra of the uncompensated desired (Target) and achieved roof motion (ACHFRM-U), and the compensated desired (DESTBL-C) and achieved roof motion (ACHFRM-C) with the required response spectra (RRS) are shown in Figure 5-11. It is clear that the achieved motion at the top of the frame matches quite well the target motion obtained from the desired Required Response Spectrum.

The degrees of distortion of the uncompensated achieved roof motions and compensated achieved roof motions from the test results are calculated using Equation (5-26) in the range of 1 to 30 Hz and shown in Table 5-2. For purpose of comparison, the degree of distortion \((\delta_{TRS})\) in signal reproduction between the RRS and target table motions (TRS) shown in Table 5-1 is repeated in Table 5-2b. The results of compensation clearly show its benefits. However, the remaining distortions are almost same as for the targeted table motions (TRS). The results indicate that in order to reduce the distortion of achieved compensated roof motions to the RRS, it is required to generate better fitted "target table motions,” since compensated achieved motions match very well with "target table motions" through the compensation procedure. Moreover, the compensation is not sensitive to the scale of the motion, producing always closest
compensation to the "target table motion." Therefore, to improve the simulation the "target table motion" must be better simulated for the various spectra amplitudes.

Table 5-2a δ Values of TRS and Achieved Table Motions vs. RRS ($S_s = 1.50g$)

<table>
<thead>
<tr>
<th>δ</th>
<th>δ_{TRS}</th>
<th>$\delta_{Uncomp.}$</th>
<th>$\delta_{Comp.}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>0.080</td>
<td>0.329</td>
<td>0.070</td>
</tr>
<tr>
<td>Lateral</td>
<td>0.073</td>
<td>0.370</td>
<td>0.064</td>
</tr>
<tr>
<td>Vertical</td>
<td>0.071</td>
<td>0.092</td>
<td>0.075</td>
</tr>
<tr>
<td>Average</td>
<td>0.075</td>
<td>0.264</td>
<td>0.070</td>
</tr>
</tbody>
</table>

Table 5-2b δ Values of TRS and Achieved Table Motions vs. RRS ($S_s = 1.75g$)

<table>
<thead>
<tr>
<th>δ</th>
<th>δ_{TRS}</th>
<th>$\delta_{Uncomp.}$</th>
<th>$\delta_{Comp.}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>0.097</td>
<td>0.484</td>
<td>0.105</td>
</tr>
<tr>
<td>Lateral</td>
<td>0.110</td>
<td>0.507</td>
<td>0.121</td>
</tr>
<tr>
<td>Vertical</td>
<td>0.112</td>
<td>0.195</td>
<td>0.136</td>
</tr>
<tr>
<td>Average</td>
<td>0.106</td>
<td>0.395</td>
<td>0.121</td>
</tr>
</tbody>
</table>

Table 5-2c δ Values of TRS and Achieved Table Motions vs. RRS ($S_s = 2.00g$)

<table>
<thead>
<tr>
<th>δ</th>
<th>δ_{TRS}</th>
<th>$\delta_{Uncomp.}$</th>
<th>$\delta_{Comp.}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>0.246</td>
<td>0.656</td>
<td>0.247</td>
</tr>
<tr>
<td>Lateral</td>
<td>0.261</td>
<td>0.661</td>
<td>0.261</td>
</tr>
<tr>
<td>Vertical</td>
<td>0.264</td>
<td>0.353</td>
<td>0.291</td>
</tr>
<tr>
<td>Average</td>
<td>0.257</td>
<td>0.557</td>
<td>0.266</td>
</tr>
</tbody>
</table>

Table 5-2d δ Values of TRS and Achieved Table Motions vs. RRS

<table>
<thead>
<tr>
<th>S_s (g)</th>
<th>δ_{TRS}</th>
<th>$\delta_{Uncomp.}$</th>
<th>$\delta_{Comp.}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>0.075</td>
<td>0.264</td>
<td>0.070</td>
</tr>
<tr>
<td>1.75</td>
<td>0.106</td>
<td>0.395</td>
<td>0.121</td>
</tr>
<tr>
<td>2.00</td>
<td>0.257</td>
<td>0.557</td>
<td>0.266</td>
</tr>
</tbody>
</table>
Figure 5-11 Test Required Response Spectrum (RRS, $S_g = 1.75g$) and Response Spectra of the Frame in the Longitudinal (X), Lateral (Y) and Vertical (Z) Directions
5.5 Experimental Verification

In order to verify the mathematical formulation of the “Compensation Procedure” presented in this chapter previously, experimental tests were performed using the 16 ft. by 16 ft. test frame at SEESL at University at Buffalo (Figure 5-5). The results and analysis were summarized in Chapter 5.4. In this subchapter, the results of a full series of tests and observations are presented. The properties and dynamic characteristics of the test frame were described briefly in Chapter 2 and more in detail in Badillo et al. (2006). The list of the performed test series is present in Table 5-3.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Description of test excitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Uncompensated White noise test</td>
<td>Unidirectional white noise excitation in the horizontal (x) direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unidirectional white noise excitation in the horizontal (y) direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unidirectional white noise excitation in the vertical (z) direction</td>
</tr>
<tr>
<td>4</td>
<td>Uncompensated AC-156 test</td>
<td>Triaxial uncompensated input motions per AC-156 RRS ($S_s = 1.75g$) in the x, y, and z directions</td>
</tr>
<tr>
<td>5</td>
<td>Compensated White noise test</td>
<td>Triaxial compensated input motions, per AC-156 RRS ($S_s = 1.75g$) in the x, y, and z directions, using transfer functions developed from the results of the Uncompensated White noise test</td>
</tr>
<tr>
<td>6</td>
<td>Compensated AC-156 test</td>
<td>Triaxial compensated input motions, per AC-156 RRS ($S_s = 1.75g$) in the x, y, and z directions, using transfer functions developed from the results of the Uncompensated AC-156 test</td>
</tr>
<tr>
<td>7</td>
<td>New compensated AC-156 test</td>
<td>Triaxial new compensated input motions, per AC-156 RRS ($S_s = 1.75g$) in the x, y, and z directions, developed by iteration</td>
</tr>
</tbody>
</table>

5.5.1 Uncompensated Input and Achieved Motions

The test frame was subjected to two sets of uncompensated excitations (target) in order to measure distortion between a target motion and an achieved motion. The first set consisted of three tests using unidirectional white noise excitations along orthogonal axis of the simulation platform in the x (East-West), y (North-South), and z (vertical) directions, respectively, as shown in Figure 5-12. The responses were recorded at the center of the shaking table extension (ATBL) and three top corners of the test frame (AFRNW, AFRNE, and AFRSW). The response spectra corresponding to the achieved motions for each direction are shown in Figure 5-13.
a) Horizontal acceleration history in the X direction (East – West)

b) Horizontal acceleration history in the Y direction (North – South)

c) Vertical acceleration history in the Z direction

d) Test response spectrum (TRS)

Figure 5-12 White Noise Excitations and Corresponding Response Spectra for Uncompensated White Noise Tests (No. 1~3)
Figure 5-13 Response Spectra for Each Direction from Uncompensated White Noise Tests (No. 1~3)
The input motions of the second set were tri-axial random motions per AC-156 RRS compatible for $S_s = 1.75g$ in the x, y, and z directions as presented in Figure 5-14. The test frame was subjected to the excitations simultaneously. The response spectra calculated by the achieved motions at the center of the shaking table extension (ATBL) and three top corners of the test frame (AFRNW, AFRNE, and AFRSW) are shown in Figure 5-15 for each direction.

![Figure 5-14 Random Input Motions and Corresponding Response Spectra for Uncompensated AC-156 RRS ($S_s = 1.75g$) Test (No. 4)]
Figure 5-15 Response Spectra for Each Direction from Uncompensated AC-156 RRS (Ss = 1.75g) Test (No. 4)
5.5.2 Development of Transfer Functions

Using the achieved motions from the Uncompensated White noise test and the AC-156 RRS test, respectively, in Chapter 5.5.1, transfer functions are calculated to develop compensated input motions. The table transfer function \(H_t \) and structure transfer function \(H_s \) are calculated in the frequency domain by using Equation (5-27) and (5-28), repeated here:

\[
H_t = \frac{\text{achieved table motion}, y_t}{\text{uncompensated input motion}, x_u} \tag{5-29}
\]

\[
H_s = \frac{\text{achieved structure motion}, y_s}{\text{achieved table motion}, y_t} \tag{5-30}
\]

where the input motion and the achieved table motion (ATBL = \(y_t \)) and structure motions (the average of AFRNW, AFRNE, and AFRSW = \(y_s \)) in the time domain are transformed into the frequency domain by using Fourier Transform.

5.5.3 Compensated Input and Achieved Motions

Compensated input motions \(\bar{x}_c \) are calculated by multiplying the uncompensated input motion \(\bar{x}_u \) by the two inverse transfer functions as in Equation (5-31) according to the procedure scheme introduced in Chapter 5.3:

\[
\bar{x}_c = H_s^{-1} \times H_t^{-1} \times \bar{x}_u \tag{5-31}
\]

The two sets of the compensated input motions in the x, y, and z directions were developed using the results of Uncompensated White noise tests and AC-156 RRS tests, respectively, as shown in Figure 5-16 and Figure 5-17.

The test frame was subjected to the two sets of the input motions. The responses were recorded at the center of the shaking table extension (ATBL) and three top corners of the test frame (AFRNW, AFRNE, and AFRSW). The response spectra corresponding to the achieved and compensated input motions for the first set of excitations (developed from the Uncompensated White noise test) and for the second set of excitations (developed from the Uncompensated AC-156 RRS tests) are shown in Figure 5-18 and Figure 5-19, respectively.
a) Horizontal acceleration history in the X direction (East – West)

b) Horizontal acceleration history in the Y direction (North – South)

c) Vertical acceleration history in the Z direction

d) Test response spectrum (TRS)

Figure 5-16 Compensated Input Motions and Corresponding Response Spectra for Compensated White Noise Test (No. 5)
a) Horizontal acceleration history in the X direction (East – West)

b) Horizontal acceleration history in the Y direction (North – South)

c) Vertical acceleration history in the Z direction

d) Test response spectrum (TRS)

Figure 5-17 Compensated Input Motions and Corresponding Response Spectra for Compensated AC-156 RRS Test (No. 6)
Figure 5-18 Response Spectra for Each Direction from Compensated White Noise Test (No. 5)
Figure 5-19 Response Spectra for Each Direction from Compensated AC-156 RRS Test (No. 6)
The degree of distortion (δ) in signal reproduction is calculated using Equation (5-26), repeated here:

$$\delta = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{\text{TRS}(f_i) - \text{RS}(f_i)}{\text{TRS}(f_i)} \right)^2}$$

(5-32)

where TRS(f_i) is the ordinate of test response spectrum (target) corresponding to the frequency f_i; RS(f_i) is the ordinate of the response spectrum calculated by the average of achieved accelerations at the three top corners of the frame at the same frequency; and N is the number of values within the band of frequency assumed as base of analyses (1-30 Hz). A response spectrum with a low δ value means an achieved motion which is well approximating the desired (target) motion.

The degree of distortion for the achieved motions using the compensated input excitations developed by the results of white noise tests and AC-156 RRS tests are presented in Table 5-4. As this table indicates, the transfer functions developed using AC-156 RRS provides better compensated response in terms of having the smaller degree of distortion. It is considered that the transfer functions developed from the AC-156 tests are more accurate to represent “actual” transfer functions as coupled motions in the x, y, and z directions since they were developed using tri-axial input motions while the transfer functions developed from white noise tests are uncoupled motions generated using a unidirectional motion for each direction.

<table>
<thead>
<tr>
<th>δ</th>
<th>White noise tests</th>
<th>AC-156 RRS tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>0.124</td>
<td>0.042</td>
</tr>
<tr>
<td>Lateral</td>
<td>0.139</td>
<td>0.054</td>
</tr>
<tr>
<td>Vertical</td>
<td>0.117</td>
<td>0.066</td>
</tr>
<tr>
<td>Average</td>
<td>0.127</td>
<td>0.054</td>
</tr>
</tbody>
</table>
5.5.4 New Compensation Procedure (1st Iteration)

As the degree of distortion (δ values) in Table 5.4 indicates, the compensated input motion does not provide the desired (target) motion perfectly at the desired location due to nonlinearity of the system table-structure and imperfection of identification process. To reduce an error, which is calculated by subtracting the desired (target) motion (\bar{x}_u) from the compensated achieved roof motion (\bar{y}_s), the iteration procedure is proposed (see Chapter 5.3). The initial compensated input motions ($\bar{x}_{c,0}$) using AC-156 RRS tests are used to develop “new compensated input motions ($\bar{x}_{c,1}$)” as in Equation (5-33):

$$\bar{x}_{c,1} = \bar{x}_{c,0} \times H_{s,e}^{-1}$$

(5-33)

where a new transfer function $H_{s,e}$ is defined as the ratio between the initial compensated achieved roof motion (\bar{y}_s) and the desired (target) motion (\bar{x}_u). The new compensated input motions are presented in Figure 5-20.

The test frame was subjected to the new compensated input motions. The responses were recorded at the center of the shaking table extension (ATBL) and three top corners of the test frame (AFRNW, AFRNE, and AFRSW). The response spectra corresponding to the achieved motions are shown in Figure 5-21.

For comparison of the achieved motion to the desired (target) motion, the degree of distortion (δ values) is calculated and shown in Table 5-5. The average δ value is 0.102, which is larger than that of the no iteration, 0.054 (see Table 5-4). The iteration procedure does not provide better responses fit to the desired (target) motion since the used transfer functions for the tests were determined with nonlinearity of the system table-structure and imperfection in identification process. It is expected that the results will be improved when the iteration procedure is continued.

<table>
<thead>
<tr>
<th>δ</th>
<th>New compensated input motion (AC-156 RRS, $S_s = 1.75g$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>0.079</td>
</tr>
<tr>
<td>Lateral</td>
<td>0.111</td>
</tr>
<tr>
<td>Vertical</td>
<td>0.117</td>
</tr>
<tr>
<td>Average</td>
<td>0.102</td>
</tr>
</tbody>
</table>
Figure 5-20 New Compensated Input Motions (Developed By Iteration) and Corresponding Response Spectra for New Compensated AC-156 RRS Test (No. 7)
Figure 5-21 Response Spectra for Each Direction from New Compensated AC-156 RRS Test (No. 7)
5.6 Summary

The compensated shake table simulation for floor response spectrum is developed from basic principles using transfer functions to create compensated signals.

In the first part, the analytical model of a uni-axial shake table considered as an equivalent single-degree-of-freedom system was presented. The transfer functions between desired (or target) and achieved absolute table motion was derived. This represents the degree of distortion in signal reproduction of a desired motion due to the mechanical and servo-hydraulic system. A new compensated drive signal was calculated by multiplying the desired motion with the inverse transfer function. However, using the compensated drive motion as input command for the shake table, the achieved motion could not perfectly match the desired, due to nonlinearity of the servo-hydraulic system. An iterative procedure was suggested to improve the performance.

In the second part, the compensated simulation concept for shake tables was applied to tests performed at the SEESL at the University at Buffalo using one of the two 7m x 7m 6-DOF shake table. A desired motion was selected, derived from the AC-156 testing standard for qualifications of nonstructural components (ICC, 2007). The shape and the levels of required response spectra for horizontal and vertical directions have been assigned according to AC-156 standard. Subsequently, a series of accelerograms were generated to match the specified required response spectrum for each direction of shaking using STEX (MTS, 2004), a simulation package for shake table operations. The three generated acceleration histories represent the “desired” table motions (target). These were initially used as “first input commands” applied to the table. The compensation procedure followed the solution developed in this paper. The structure transfer function along with the table transfer function were simultaneously used to compensate the desired command to the shake table in order to achieve the desired motion at the roof level of the structure using the technique described in the body of this paper. Results achieved from testing in terms of response spectra showed that it is feasible to obtain a much better response using the compensation technique.

Although the presentation herein was made for a planar motion or for independent motions, the formulation can be applied to coupled movement in various directions replacing the transfer functions by a transfer function matrix working simultaneously to all degrees of freedom.
CHAPTER 6

SUMMARY, CONCLUDING REMARKS AND RECOMMENDATIONS

6.1 Summary and Concluding Remarks

The purpose of this study was to design a new extended test frame for seismic qualification tests of suspended ceiling systems and their accessories. Realizing that current practice for suspended ceiling qualifications does not suitably address the vertical motion of the suspended floor/roof caused by seismic motions, a study of the horizontal and vertical motions was conducted. After establishing the importance of the out-of-plane vibrations of the suspended floor/roof, a frame for testing the suspended equipment and architectural-functional components was developed.

A 20 × 50 ft. test frame was designed to realistically simulate ceiling performance correlated with the response observed during real earthquakes. In order to challenge the suspended ceiling systems to maximum (i.e. realistic) motions, the roof of the frame was designed to have “actual floor” dynamic characteristics. The dynamic characteristics of typical floors (or roofs) in buildings were surveyed, and the roof of the test frame was designed to have frequencies of approximately 10 Hz in the vertical direction compatible with the values from the survey. The walls of the frame were designed to be relatively rigid in comparison to the roof system, which is also compatible with structural walls and claddings, having approximately 17 Hz. The frame was also designed to accommodate various construction conditions in terms of structure materials and different framing layouts by changing of the roof properties (frequency) using additional masses. The frame was designed to have modular components to allow smaller frames, such as 20 ft. × 20 ft., to be assembled.

Analytical models were developed using SAP2000 to estimate the dynamic characteristics and the response of the test frame and to evaluate capabilities of the frame, while providing the models for simulation of future experiments. The analytical models developed for 20 × 20 ft. and 20 × 50 ft. frames indicate that the fundamental frequencies of the proposed frames show good agreement with the design criteria.
Test input motions (protocol) were studied, and a new vertical formulation alternative to the AC-156 standard’s Required (target) Response Spectrum (RRS), is proposed, without vertical (height) amplification, since structures are typically rigid in the vertical direction. In addition, an alternative protocol (Retamales et al., 2009, summarized in Chapter 4.2), allowing for the assessment of the seismic performance of distributed nonstructural systems with multiple attachment points (i.e. suspended ceiling systems), is also proposed for future considerations.

In order to better simulate the RRS (target) at the top corner of the frame, a “compensation procedure” is introduced in Chapter 5, with its experimental verification at the Structural Engineering and Earthquake Simulation Laboratory (SEESL) at the University at Buffalo using a six degrees-of-freedom (6-DOF) shake table.

Some remarks derived from this study are as follows:

1. In order to realistically simulate earthquake response of typical buildings, a test frame for seismic qualification of suspended ceiling systems and their accessories should have realistic dynamic characteristics, in particular for the vertical direction where the design codes do not have suitable specifications.

2. Through research it was concluded that the fundamental out-of-plane frequencies of most constructed floors were in the range of 2.6 Hz ~ 18.4 Hz. The frequency of the roof of the frame was suggested to be in the range of 2.6 ~ 8.0 Hz to challenge the ceilings to the maximum demand for all possible cases. To accommodate these design criteria, the fundamental frequency of the roof of the frame was designed to have approximately 10 Hz, which was at the right edge of the “plateau” of the required response spectra (AC-156 RRS), so that the fundamental frequency of the roof will be placed in the plateau having maximum input demand after installing a ceiling system.

3. Floor (roof) motions have amplification in the horizontal direction from the ground motion due to the flexibilities of the frame. This amplification will be adjusted by the “compensation procedure” to generate a required response at the top corner of the frame.
4. The vertical amplification for the frame in the vertical direction should be negligible since columns are typically rigid in the vertical direction. Thus, this study proposes a new alternative vertical RRS without height amplification in the vertical direction to be considered by a revised AC-156 and other standards.

5. Using the analytical model developed for the new test frame (20 × 50 ft.) in SAP2000, the capabilities of the frame were estimated by dynamic analyses using the AC-156 RRS simulated motions. The results indicated that the designed frame was safe up to the target of \(S_s = 4.5 \text{g} \) as the roof weight of the frame was 8.0 psf. For various roof weights, the frame with the shaking intensity of \(S_s = 3.0 \text{g} \) was safe up to the weight of 17 psf.

6. Using the analytical model developed for the new test frame (20 × 20 ft.) in SAP2000, the variation of the response of the frame roof was evaluated. Peak spectral accelerations were estimated using different input motions and different roof properties (frequencies). The results indicate that the variation of the roof response was mainly influenced by floor “input motions” rather than change of the roof properties with different additional weights.

7. With the proposed “compensation procedure” it is feasible to obtain a much better simulation of the roof motion of the frame using adjusted shake table command drive motions in the three directions, based on the actual dynamic properties of the frame. The compensation procedure can be applied at other laboratories and for other applications.

6.2 Recommendations for Future Developments

1. Both the large test frame, 20 × 50 ft., and square test frame, 20 × 20 ft., will be used for qualification tests for suspended ceiling systems. The experimental test results using the two frames could be compared. If the results are comparable, the design of the 20 × 20 ft. square test frame can be used for future tests also in other laboratories with smaller shaking platforms.
2. Further evaluation and comparisons of the alternative protocol (Retamales et al., 2009) and the AC-156 should be made before an alternative protocol is adopted for future tests.

3. Since the test frame has flexibilities and the shake table system is not perfect, the input motions have distortions. Although the “compensation procedure” significantly reduces these errors during tests, the results can be improved by an “iterative compensation procedure,” discussed in Chapter 5.5.4. In order to obtain better response in terms of matching the achieved response spectrum to the required response spectrum at the desired location of the test frame, the “iterative compensation procedure” is recommended.

4. The transfer functions developed for the “compensation procedure” were made for independent motions in the x, y, and z directions, respectively. However, the transfer functions can be replaced by a full transfer function matrix including the cross-correlated transfer functions, working simultaneously to all degrees of freedom for coupled movement in various directions.
CHAPTER 7
REFERENCES

Appendix A

DESIGN & MODELING FEEDBACK-1

Response to Issues raised by the advisory group to Draft 1 of the Suggested Design

Comments to the geometric design of a new test frame were requested from the industry partners of SEESL and NEES *Simulation of the Seismic Performance of Nonstructural Systems* project, research management team (of NEES *Simulation of the Seismic Performance of Nonstructural Systems* project), and SEESL technical staff. The feedback was obtained during the period from January 30, 2009 to February 19, 2009. The frame design was developed, incorporating the feedback. The comments and the issues addressed in the reply are summarized Table A-1.

<table>
<thead>
<tr>
<th>Reader</th>
<th>Comments & Questions</th>
<th>Initial Reply</th>
<th>How Issued is Addressed in Actual Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dennis Alvarez</td>
<td>1. What is the proposed size of the joists?</td>
<td>The joists were picked from a list provided by a manufacturer of “open web floor joists.” However, the joist could be made in-house to be slightly more flexible, compatible with the design frequencies (see answers below.)</td>
<td>Suggested use of commercial joist type: 10K1: Depth: 10 in. Spacing: 4 ft. (Joists start 2 ft. from the frame edge.)</td>
</tr>
<tr>
<td></td>
<td>2. Has anyone estimated the fundamental frequencies of the proposed new frame? I realize this may be difficult given the required, flexible connection. Of most concern is the Z direction, as that was too flexible in the first table causing some undesirable test phenomena that seemed at odds with observed ceiling damage.</td>
<td>We are using the floor considerations based on Murray et al. (1997) and similar information. The design is conceived to have basic frequency (stiffness) of 20 Hz with the possibility to adjust it downwards by adding masses. This is in line with the suggestion above.</td>
<td>Estimated frequency in the vertical direction of the 20 ft. x 50 ft. frame is 10.01 Hz from SAP2000; this is compatible with the upper limit suggested by Murray et al. (1997). As designed, the new roof’s lower frequencies (≥ 4Hz) can be achieved by addition of weight in center of roof.</td>
</tr>
</tbody>
</table>

Table A-1 Feedback on the Draft 1 for the Period from 1/30/09 to 2/19/2009
<table>
<thead>
<tr>
<th>Dennis Alvarez</th>
<th>3. The description stated that the ceiling height could be lowered. Is that proposed to be something that could be changed after the frame is constructed? Another variable I think should be examined is plenum depth. I would expect a larger “plenum depth” would affect the horizontal forces experienced by the ceiling.</th>
<th>See the answer about the #6 question.</th>
<th>The dimensions of the frame were established as: Frame Height: 10 ft.-0 in. Ceiling Height: 7 ft.-6 in. Plenum depth: 1 ft.-9 in. (Plenum depth can be increased. Ceiling system can be installed lower.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4. The new frame is designed to have a fundamental frequency in the Z-direction of 20-40 Hz with no added mass. When loaded to the maximum recommended by the manufacturer, the result is expected to be approximately 5 Hz. This will allow the fundamental frequency to be adjusted between these two values by varying the mass and can be used to achieve results more in line with observed earthquake damage.</td>
<td>We are using the floor considerations based on Murray et al. (1997) and similar information. The design is conceived to have basic frequency (stiffness) of 20 Hz with the possibility to adjust it downwards by adding masses. This is in line with the suggestion above.</td>
<td>See the issue addressed in #2 above.</td>
</tr>
<tr>
<td></td>
<td>5. As was discussed extensively at ASTM, setting the z/h=1 causes amplification of the vertical motion not experienced in actual structures. Setting z/h=0, as in the current state of the proposed ASTM standard, will help eliminate overly conservative, vertical failure modes.</td>
<td>This proposal was made previously by the UB team and support documentation is being developed. The design team is preparing shake table motions compatible with the delivery of real roof motions at the roof level of the frame (Maddaloni et al. 2009b). This includes compensated shake table motions horizontally and un-amplified motions vertically.</td>
<td>See considerations in the left column.</td>
</tr>
<tr>
<td>Dennis Alvarez</td>
<td>6. I suggested we start with the plenum depth (the distance from the bottom of the trusses to the suspended ceiling) that has been used for previous testing (18"?), so as to not introduce an unnecessary variable. At some point in the future, I think we should examine the effect of plenum depth. The design of the frame will allow for the ceiling height to be easily altered.</td>
<td>This point is well taken. The position of the “wall angle” would be made variable (screwed to the frame walls) such that it will accommodate various plenum heights.</td>
<td>See the issue addressed in #3 above.</td>
</tr>
<tr>
<td>Bob Bachman</td>
<td>8. The height of the test frame seems rather restrictive. I would think we would want more height. The height range between the bottom of the suspended ceiling and the above floor should be at least 6 feet. Perhaps 8 feet plus minimum of 4 feet below the ceiling and the deck. I would say the minimum height should be at least 12 feet and maybe it should be 14 feet. Speed of installation is nice but covering the height range of importance is far more important. I think we are only to have one chance to get this right.</td>
<td>It is unclear to the designers why the overall height is important. Although IBC (ICC, 2006) requirements are 7’-6” above floor level for architectural reasons, this height is not important for structural considerations. The horizontal and transversal stiffness can be controlled by structural changes in the “wall” frames. The height above the suspended ceiling (plenum) seems to be defined by the minimum required for non-structural components, light fixture, piping, grid suspension system. All current documents indicate 2 ft. below the open web trusses. We would like more details from the commenter.</td>
<td>The dimensions of the frame were slightly modified See reply at item #3 above. The height of a structural frame was designed to be the minimum required by standard IBC (ICC, 2006), to allow efficient space for assembling the “ceiling” systems, while accommodating requirements of standards.</td>
</tr>
</tbody>
</table>
9. The design parameter for the floor above is extremely important. I would prefer the floor were rigid but that is not likely doable so next best thing is that it should simulate the vertical response of a real floor. In other words, when tested the vertical response should have the same frequency and damping characteristics of a typical floor and the mass of the floor should have sufficient weight so that the response of the ceiling system should have no influence on the response of the floor above. To do this, perhaps the floor above should be simulated with metal deck and cast in place concrete pieces or concrete planks. I recognize this will add a lot more weight to the frame and will cause the frame to increase in size. But the vertical response must be properly simulated or else we may be causing unreal responses, which I think we are doing with the current frame. And the resulting diaphragm of the floor above should be torsionally stiff.

We are using the floor considerations based on Murray et al. (1997) and similar information. The design is conceived to have basic frequency (stiffness) of 20 Hz with the possibility to adjust it downwards by adding masses. This is in line with the suggestion above.

See the issue addressed in #2 above.
<p>| Bob Bachman | 10. Unfortunately, the vertical earthquake response of floors systems is virtually never studied (It is studied for floor vibrations, so for small amplitudes, the range of frequencies and damping are readily available). However, I know of one building, the LA county 911 building, where vertical responses at the center of a floor have been measured along with the vertical accelerations of the columns since 1990. This should be looked at to determine the effective damping of an actual floor during real earthquakes. For some stupid reason, the committee that decides on CSMIP instrumentation never instruments the center of a floor vertically. The only reason it’s measured in the LA county 911 is because I personally caused it to happen. | This is a good suggestion. Combined with the recommendations of Murray et al. (1997), prior information about floor response data from various earthquakes will be considered in the detailed design. | Additional modifications of vertical properties might be done upon completion of survey. |
| 11. The horizontal framing should either be very stiff and not introduce unreal vibration horizontally, or if spurious high frequency vibrations are introduced, they should be damped in some way so that the horizontal response actually simulates building response. | This is a good suggestion also. The walls of the frame are made to be very stiff to prevent any differential motion of the roof corners and boundaries to the shaking platform. Frequencies of 20 to 30 Hz will be implemented for this purpose. | Estimated fundamental frequencies of the walls are 19.29 Hz and 19.02 Hz in the horizontal directions, X and Y, respectively, for the 20 ft. × 50 ft. frame. The frequencies are compatible with typical walls in structures. The higher frequencies have very low participation mass and should not contribute to the overall set. Adjustments of damping if necessary could be done during qualification testing. |</p>
<table>
<thead>
<tr>
<th>Shakhzod Takhirov</th>
<th>12. What is an estimated frequency of the frame in all three directions?</th>
<th>20->30 Hz horizontally; 40->50 Hz vertically</th>
<th>Modified design in Draft 2 has estimated frequencies of the 20 ft. × 50 ft. frame.: 19.29 Hz in X, 19.02 Hz in Y, 10.01 Hz in Z.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13. What is an estimated frequency of the frame’s top from which the ceiling system is going to be suspended</td>
<td>20->10 Hz vertically (starting at 20 Hz, adjustable by adding masses)</td>
<td>See the issue addressed in #2 above.</td>
</tr>
<tr>
<td></td>
<td>14. Since the frame will be fused to avoid the frame’s failure and/or equipment failure, it is doubtful that the experimental setup is suitable for testing a continuous suspended ceiling system. The members of the suspended ceiling are significantly weaker than the frame members, so failure of the ceiling system most likely will happen along the line connecting the fuses</td>
<td>The interpretation of the reader is incorrect. The lower level fuse is set to allow continuous structural behavior of the frame at small coupling errors in the shake table motions (such as realized in the Woodframe House testing) without any differential movement. The fuse will be activated only when the frame may reach one of its limits, which are set higher than the failure of ceilings or any other equipment. The higher level fuse will be set to damage the frame without damaging the tables.</td>
<td>See considerations in the left column and in the main document’s descriptions.</td>
</tr>
<tr>
<td></td>
<td>15. Most likely the test setup would represent an ordinary testing of two regular-sized suspended ceilings on two separate shaking tables connected to each other with some nonlinear extension.</td>
<td>See considerations explained in #14 above.</td>
<td>See considerations explained in #14.</td>
</tr>
</tbody>
</table>
Shakhzod Takhirov
16. Based on the two first bullets the reviewer would recommend to use the same setup that was used in the NEESWood project at the NEES’s experimental site in Buffalo. According to the website of the project, the two tables were rigidly connected to each other to expand the footprint of the joined tables to 54’ x 23’ which would accommodate the 50’x20’ frame

See considerations explained in #14 above.

See considerations explained in #14.

17. It is not clear how the frame design reflects actual properties (frequency and stiffness) of a suspended ceiling’s installation in real buildings. If the study on this matter had been conducted, the reference and main findings should be provided to backup the frame design.

We are using the floor considerations based on Murray et al. (1997), and assembly standards described in CISCA (2004a and 2004b), ASTM-580 (2008). Moreover, estimates of structural and nonstructural connections are being considered. While this is work in progress, the first draft was focused on geometric design. The properties of the frame are still in development. If the commenter has some additional information this can be used now.

See note on left column and in the issue addressed in #2.

Paul A Hough
18. Can the open web joists start 2’ from the frame edge rather than 4’? This would greatly add installation of a ceiling.

Sure, we can manage that.

The new draft accommodates this requirement. The joists start now 2’ from the frame edge.
<table>
<thead>
<tr>
<th></th>
<th>19. Can the anchors or attachments of the frame go on the outside of the frame rather than the inside? (safety reasons)</th>
<th>NO, since there are no suitable anchoring holes on the outside. However, I shall check what can be done.</th>
<th>The anchor extensions (attachments) of the frame were eliminated. Frames are now connected directly to shake tables (extensions).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20. Are the diagonal corner braces at the base of the frame needed after the frame is installed? Safety could be improved if they are not there but can be worked around if they are needed for stiffening.</td>
<td>We shall try to eliminate them in the detailed design</td>
<td>The diagonal bottom braces have been eliminated.</td>
</tr>
<tr>
<td></td>
<td>21. Move initial ceiling height to just over 6'.</td>
<td>This is what I was hoping since the speed of test execution is very important (personnel time, safety, equipment usage, as well efficiency of industry testing).</td>
<td>See considerations explained in #8 (plenum depth) above.</td>
</tr>
<tr>
<td></td>
<td>22. Side wall timbers should be expanded to at least 12 inches in width. They should be made of laminated 3/4" plywood and the inside walls of the frame squared. (Again installation help.)</td>
<td>Sure this can be done.</td>
<td>See considerations in the left column. (Details are being developed for the final draft.)</td>
</tr>
<tr>
<td></td>
<td>23. Am I correct in assuming that z/h has nothing to do with the actual frame but does impact the way the table motions are developed?</td>
<td>Yes, you are correct.</td>
<td>See the initial answer in #5</td>
</tr>
<tr>
<td>Paul A Hough</td>
<td>24. I am also assuming that the ceilings & all suspension wire, etc will be fastened to the joists which will have the same stiffness as the frame. If this is not the case we need another surface with the same properties to attach to. It would be nice to make provisions that a case in place steel/concrete deck can be added at some future time, which could accommodate anchors into concrete.</td>
<td>We think along these lines, but more on using precast planks for adjustment of frequency.</td>
<td>See considerations in the left column. See also the issue addressed in #2.</td>
</tr>
<tr>
<td>25. Some thought has to be given to a bridge or working surface that is safe to work from for the transitional piece between the two tables. I know you have thoughts but there was nothing detailed.</td>
<td>Indeed we are looking to extend the bridge used for the “wood-frame” structure testing as base for the transition between tables</td>
<td>An additional 10’-6” by 23’-0” bridge is planned between the two tables as a workspace and base platform See Draft 2 of frame assembly.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

DESIGN & MODELING FEEDBACK-2

Response to Issues raised by the advisory group to Draft 2 of the Suggested Design

Comments to the design of an extended test frame were requested from the industry partners of SEESL and NEES *Simulation of the Seismic Performance of Nonstructural Systems* project, research management team (of NEES *Simulation of the Seismic Performance of Nonstructural Systems* project), and SEESL technical staff. The feedback was obtained for the period from May 10, 2009 to May 27, 2009. The frame design has been developed, incorporating the feedback. The comments and the issues addressed in the reply are summarized in Table B-1.

Table B-1 Feedback on the Draft 2 for the Period from 5/10/2009 to 5/27/2009

<table>
<thead>
<tr>
<th>Reader</th>
<th>Comments & Questions</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob Bachman</td>
<td>1. “The height of the test frame is 10 feet. with current assumed plenum depth being 1 ft. 9 inches. I have no clue where that number came from. We should have a range of plenum depths. As indicated, the minimum should be 1 ft. – 9 inches with the maximum being either 6 feet or 8 feet which raise the height of the test frame to either 12 feet or 14 feet. Remember the primary reason for this test frame in the first place is to determine the seismic vulnerabilities (and capacities) of ceiling systems and their interactions with other ceiling nonstructural components. There is some belief based on observations that ceilings with greater plenum depths are much more vulnerable and have lower capacity. Plenum depths of 6 or 8 feet are common in some building applications. It is important to have this capability built into the test frame.”</td>
<td>#1. Height of frame (a) The height of frame was selected such that could allow rapid assembly and disassembly of components, therefore allowing a greater utilization of shake tables. (b) The plenum can be built of different heights by placing the “perimeter angles” at various elevations in increments of 4 ft. below the joists, therefore allowing plenum heights of 12 ft. to 72 ft. (c) Adverse effects for extreme plenum heights can be eliminated by designing the “table drive” – see the reply #2.</td>
</tr>
</tbody>
</table>
2. “I am still very concerned about the weight of the test frame roof. Actual typical floor/roof weights are in the range of 30 to 60 psf. While suspended ceiling weights are in the range of 2 to 4 psf. So the ratio between typical roof/flooring weights is in the range of 15 to 25 and therefore dynamic interaction between the two is not expected. However, it appears the test frame roof has weight is in the range of 5 - 8 psf and there the ratio is only 2 to 4 and dynamic interaction appears much more problematic vertically. There is some mention of concrete planks but they are not currently included in the design. I would feel very much more comfortable if the concrete planks were included in the design and the test frame roof weight was at least 30 psf.”

#2. Roof weight and frequency range of frame

(a) The roof was designed to have a vertical frequency above 20 Hz without additional mass (bare frame) having weight of roof \(\leq 1 \) psf.

(b) The roof will support an additional “floor weight” made of four planks of 4’×4’×2” placed above the center bays. This accounts for a distributed weight of 4 psf. This is the basic configuration having a vertical frequency of approximately 10 Hz which is characteristic to structural floors.

(c) When extremely heavy ceiling tiles are added (having a weight of 3 psf), the frequency reduces to approximately 8 Hz, where further addition of tiles will create same effects as the original.

Therefore the added mass of the roof would affect the floor frequency, but will keep it limited above 8 Hz, well within the range of regularity constructed floors. The response variations are limited to +/- 5% as shown in this document.

Increase of weight of frame to values indicated in the comment is not feasible with shake tables (in the opinion of the design team).
Bob Bachman	3. “I am still very concerned about the damping of the test frame especially the test frame roof. Actual floor/ceilings are expected to have damping in the range of 5% for earthquake level vibrations. I expect the current bare steel test frame will have damping in the range of 1% or less. This will greatly overly amplify floor motions especially in the vertical direction particularly at the natural frequency of the roof ceiling. This may be reduced by concrete planks. It would good if the planks were not pre-tensioned. Pre-tensioned planks will have much less damping than non-pre-tensioned planks. I would like to see the damping of the roof/ceiling have damping the 5 % range.”
Dennis Alvarez	4. “I'm assuming the 1 ft. 9 in. is the plenum depth used for previous tests. I agree with Bob that the frame needs to be able to test larger plenums to evaluate the effect of plenum depth of ceiling performance. Plenum depths of up to 30 ft. are not uncommon, but I would agree with Bob to limit the depth to 6 ft. to 8 ft. as this should be sufficient to evaluate the effect of plenum depth on ceiling performance and 30' ft. plenums would not be practical.”
#3. Roof Motion	The frame was designed to be used with shake table motions programmed to deliver a desired “floor motion” at the roof level: (a) The “shake table command drive,” in three directions, is modified by a procedure developed by the designers of the frame to generate a response of the roof based on dynamic properties of the frame (Maddaloni et al., 2009b). (b) The “command drive” can be designed to deliver alternatively damped motions as desired by the testing criteria. There is no need in the constructed frame to add damping. (c) The “command drive,” compensated for the frame characteristics, is designed to reject higher modes effect in the frame structure. (d) The compensation procedure was already developed and a journal paper was written and is awaiting review. The information will be released to public as soon as the paper is approved. The procedure is suitable for applications to other types of shake tables, testing equipment, nonstructural components or substructures.
	See the issue addressed in the reply #1 above.
5. “I’ll have to defer to Bob’s greater expertise with regard to ceiling/structure interaction. I would like to see the vertical stiffness of the top of the frame increased to also avoid amplification of the vertical motion. Deeper/stiffer/additional joists would also increase the mass, although not nearly as much as concrete slabs.”

See the issue addressed in the reply #2 above.

6. “As Bob states, increased damping will also decrease over amplification of motion. Because of either stiffness concerns, weight concerns, or a combination of both, this will be a larger problem in the vertical direction.”

See the issue addressed in the reply #3 above.

7. “There are several positive changes to the frame and test program that I believe will enable a more accurate evaluation of ceiling performance. Currently, most tests show failure from vertical displacement of ceiling panels while most observed damage in ceilings is lateral damage at the perimeter. Previous tests were run with the acceleration set to z/h=1 for all three directions [AFLX=Sds*(1+(2*z/h)]. Vertically, z/h should have been set to zero. This will lessen the tendency for ceiling panels to be dislodged.”

#4. Design of roof motion

(a) The design of the roof motion is based on Mosqueda, Retamales, Filiatrault, and Reinhorn (2008), which could replace the AC-156 spectra (ICC, 2007). The primary change will have great effects on the vertical motion.

(b) If AC-156 is not changed as indicated in (a) above, then the vertical motion should be determined from the horizontal using a function of 0.42 for AFLX and 0.22 for A RIG, not 0.67 as indicated today. The reason for such design is that motion in vertical direction developed at ground level is not amplified by the “usually” vertically rigid structure.

(c) Command drive motion design (see the reply #3) is described in a journal paper (awaiting review).
| Amir S.J. Gilani | **Test frame (#8 ~ #15)** | #5. Wall Frequencies in and out-of-plane:
(a) The in plane motion characteristics were designed considering flexibility (rigidity) of typical walls, having a natural frequency, approximately 17.7 Hz.
(b) The shake table “floor motion” is designed (see the reply #3) to compensate for any excessive flexibility of walls. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8. “Please clarify if the test frame intended to represent a typical story of a building or a generic frame used to envelope the response of many types of the construction. In the former case, the goal would be to survey a number of buildings and obtain their dynamic properties. While in the latter, the goal is try to design the frame dynamic properties to maximize the AC-156 (or other standard) input accelerations. I am not sure if the stated frequencies are representative of typical construction. The horizontal frequency is 20 Hz (0.05 sec) and could represent a very stiff walled or braced but not framed building. Most of our buildings are more flexible. The vertical frequency also appears high for typical construction.”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. “The 10 ft. height might be Ok for testing but again it is not a typical building height. Would it be feasible to have a range for the heights for ceiling installations?”</td>
<td>See the issue addressed in the reply #1 above.</td>
</tr>
<tr>
<td></td>
<td>10. “Is the roof design intended to be a rigid diaphragm?”</td>
<td>#6. The roof design is “rigid” in plane, i.e. frequencies larger than ten times of any service frequency.</td>
</tr>
<tr>
<td></td>
<td>11. “The frame roof framing consists of HSS sections in one direction and open joists in the orthogonal direction. In typical floor construction, W sections are usually used with joists.”</td>
<td>#7. It is correct that W sections are usually used with joists, however due to fabrication and instrumentation needs square tube bars were selected. The mechanical properties are equivalent in the relevant direction.</td>
</tr>
<tr>
<td></td>
<td>12. “Would the typical floor inertial mass be included in tests? The existing bare metal frame is likely too light and does not include typical floor mass (60 or so psf) in design.”</td>
<td>See the issue addressed in the reply #2 above.</td>
</tr>
</tbody>
</table>
“Could you elaborate on why a rigid connection (rather than the fuse) is not used between the two sub-frames? I believe the rigid type of arrangement was previously used in NEESWood project.”

The tandem shake table synchronization:

The designed frame system has a middle component built to:

(i) allow synchronized motion and suppress “minor discrepancies” between shake tables. Differential movement of up to 0.10” could be suppressed. This is a rigid brittle connection as used in the NEES wood project.

(ii) larger differential motions “larger than 0.60” will break a “fuse” that will allow independent motion of shake tables without damaging any of the tables (controllers, connections, etc.).

“The frame schematics show that the columns are not fixed at the base. The fixity location is offset from column longitudinal axis. The concern is that the column will uplift and induce addition flexibility to the system.”

The columns are supported by a base beam connected every 4 ft. to the shaking platform. The flexibility of the beam influences the vertical vibrations characteristics by 0.1 Hz (within the error of calculation) and 2 Hz in horizontal (which is compensated through the motion design). The designers shall explore a higher rigidity for the base beam.

“Will you be able to adjust both the horizontal and vertical frame frequencies to mimic different type of construction?”

See the issue addressed in the reply #2 above.

“Could you describe the modeling used for the open web joist members and whether the shear deformation was included?”

Used the joist element available in SAP2000. It is not clear how SAP2000 is considering shear. However, the stress analysis performed by hand calculations does not raise a flag. The shear stiffness and deformations are negligible here.
| Amir S.J. Gilani | 17. “I am not sure if you have used the SAP model for response history analysis. If so, do you have an analytical estimate on the level of seismic force transmitted by the frame to the grid components at a given input intensity?” | #11. See Figure 4-19 for analysis of the frame with random motions (AC-156 spectrum compatible for $S_s = 3.0g$) with peak ground acceleration of 1.28g horizontally and 0.53g vertically. Results are comparable to “Badillo et al. (2006).” |
| #11. See Figure 4-19 for analysis of the frame with random motions (AC-156 spectrum compatible for $S_s = 3.0g$) with peak ground acceleration of 1.28g horizontally and 0.53g vertically. Results are comparable to “Badillo et al. (2006).” | 18. “Would it be possible to obtain a copy of your analytical model of the test frame?” | #12. The current model is available upon request by e-mail. |

Input histories (#19 ~ #22)

19. “Will z/h be set to zero for vertical motion? If so, would the vertical RSS of the AC-156 should be modified for testing.”	See the issue addressed in the reply #4 above.	
See the issue addressed in the reply #4 above.	20. “The AC-156 response spectrum already includes all amplification for frame flexibility; I believe the intent is to apply the target motions to the roof (by applying the inverse transfer function at the base). This is a very good approach and we had previously discussed such method. The question I have is whether you plan to use data from the corners or middle of the roof or a combination of the two.”	#13. Note: when $z/h = 0$, the vertical motion becomes approximately 0.42 (for A_{FLX}) and 0.22 (for A_{RIG}) of the horizontal motion (see AC-156 for guidance (ICC, 2007)), as well as the results.
#13. Note: when $z/h = 0$, the vertical motion becomes approximately 0.42 (for A_{FLX}) and 0.22 (for A_{RIG}) of the horizontal motion (see AC-156 for guidance (ICC, 2007)), as well as the results.	21. “During the past tests, the input motions were filtered and the zero period accelerations were reduced. Will the same type of filtering be used in the upcoming tests?”	#14. The motion is designed for the corner movement. The roof will amplify the motion depending on its dynamics. A user (lab engineer) may design the delivery of a center roof motion, or a combination of corner and center.
#14. The motion is designed for the corner movement. The roof will amplify the motion depending on its dynamics. A user (lab engineer) may design the delivery of a center roof motion, or a combination of corner and center.	22. “Would it be possible to obtain a draft copy of reference 4 in the document?”	#15. (a) The accelerations at low frequencies are reduced to fit table max displacements. (b) The testing is done using incremental peak motions. (c) Filtering will be applied to meet equipment limits at max displacements.
#15. (a) The accelerations at low frequencies are reduced to fit table max displacements. (b) The testing is done using incremental peak motions. (c) Filtering will be applied to meet equipment limits at max displacements.	#16. A draft will be available with the completion of design. The paper is awaiting review.	
Amir S.J. Gilani	**Test methodology**	
23. “I have a question that is not directly related to the current project status but would like your input on. Currently, an ASTM test committee (comprised on many of us in the email list) is developing a standard regarding the earthquake simulator testing of suspended ceilings. The primary objective of the standard would be to serve as a reference document that provides guidelines and recommendations for future tests. Will the project team be inclined to consider using such document for the upcoming tests?” | #17. We are already studying the final draft of ASTM standard and we shall include it in the NEES program. |
| --- | --- | --- |
| Tony Ingratta | 24. “Since the ceiling height is +7 ft., ladders and or rolling scaffolds will be necessary to install the ceiling. A unitized smooth & level floor covering will be necessary over the existing grated floor on the shaker tables and link frame. The covering should to be tied to the shaker table to prevent shifting during the test. This will prevent tripping hazards and facilitate the use of rolling scaffolds etc.

The slate sheets used previously continually shifted out of place causing a tripping hazard.” | - |
| 25. “The 2'-4" deep built up trusses on the East and West ends of the link frame will set the plenum depth of the ceiling. Also, if one wanted to test concealed or direct attached drywall ceilings to the open web joists these deep members would not permit this type of installation.

It is preferable to have all bottom cords of the joists and trusses in the same plane.” | #18. While it is desirable to have all trusses and joists of same height, this is not possible. The vision is that all ceilings will be suspended from the upper surface of the roof which has all components in the same plane.

In such case the plenum can be measured from the top surface. |
<table>
<thead>
<tr>
<th>Tony Ingratta</th>
<th>26. “It is preferable to maintain a 4-ft. or even better a 2-ft. on center spacing of the open web joists along the entire length of the frame. Ceiling hanger wires usually span 4-ft. on center. Compression posts and seismic bracing wires are usually located 12-ft. on center.”</th>
<th>The new frame accommodates this within limits of the geometric design.</th>
</tr>
</thead>
<tbody>
<tr>
<td>27. “Should the perimeter angle be connected to a wood 1 x 6 as was done in previous shaker table testing? Or should consideration be given to a drywall and stud (steel or wood) perimeter to evaluate perimeter angle attachments to this common type of wall structure?”</td>
<td>#19. Both alternatives can be accommodated in the current design. Perhaps a suggested detail (from the commenter) would allow adequate provisions for both solutions.</td>
<td></td>
</tr>
<tr>
<td>Shakhzod Takhirov</td>
<td>28. “If an ASTM standard could be promulgated before the tests begin, would you consider using that standard as the test methodology for the NSF -NEES Grand Challenge for Suspended Ceilings and Associated Fixtures?”</td>
<td>See comment in the reply #17 above.</td>
</tr>
<tr>
<td>Which RRS to use? Industry needs new spectrum. (#29 ~ #32)</td>
<td>29. “Coming back to the history of development of AC-156 document, it was originally developed by Square D / Scheider Electric Co and was primarily intended for testing electrical equipment which has limited number attachment points usually located close to each other.”</td>
<td>#20. We are starting with the RRS from the AC-156, but have developed suggestions for new motions as published by Mosqueda et al. (2009b) for nonstructural components. Moreover we suggest developing new suit of ground motions compatible with the desired RS, which preserve the energy and velocity field. This will be part of the research in NEES project</td>
</tr>
<tr>
<td></td>
<td>30. “In opposite to equipment, the suspended ceiling system represents a complex system with many and many attachment points while mass of the system is distributed over large area.”</td>
<td>See comment in the reply #20 above.</td>
</tr>
<tr>
<td></td>
<td>31. “Therefore, the current practice of using AC-156 spectra in seismic testing of suspended ceilings raises concern about validity of the approach.”</td>
<td>See comment in the reply #20 above.</td>
</tr>
</tbody>
</table>
32. “Ideally, the primary goal of the NEES project should be to develop a solid approach for seismic testing of the suspended ceiling systems, which is easy to implement at various labs nationwide. As one of the examples of such solid approach would be to have 1) a relatively rigid frame in all three directions (size of which to be determined) that passes shaking table’s impact with no or minimal amplification and 2) a spectrum that takes into account flexibility of the floor and horizontal amplification, as it is done in current AC-156. Once again, this new spectrum should take into account the majority of possible variations of the floor natural frequencies and their modes of vibration. In this case the main features of suspended ceilings systems such as large number of attachment points and distributed mass will be taken into account.”

#21. Applicability of design to other installations:

(a) The system is custom designed for the shake tables at SEESL.

(b) However, the basic design (components) of 20 ft. × 20 ft. can be used in other large installations (Berkeley, CERL, UCSD, Reno, etc).

(c) The procedure for roof motion generation developed in this research can be used at other installations with proper adjustment for local dynamics.

(d) The design team can provide training to users and lab operators for similar developments

<table>
<thead>
<tr>
<th>Transfer Function Approach. (#33 ~ #36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33. “The utilization of transfer function to achieve the required response spectra at the attachment points of the ceiling is a good approach to overcome some flexibility of the frame.”</td>
</tr>
</tbody>
</table>

No comment necessary here.

34. “In case of the NEES project it is not clear how the project will benefit from this approach. The amplification of the frame due its flexibility will be forced down by the transfer function to achieve matching criteria to the RRS.”

See comment in the reply #3.

35. “So, let’s assume that we reduced the natural frequency of the floor and generated a transfer function for this setup. For the new natural frequency of the frame the transfer function will eliminate that amplification if are still trying to match to the same spectra.”

No comment is necessary here.
36. “Another concern is about transfer function itself which is usually based on prerecorded data. The suspended ceiling systems will perform non-linearly from level to level; therefore, the transfer function generated for certain level of testing most likely will not work for the next one up. If the transfer function can be generated on-fly, there is a concern about stability of shaking table control.”

#22. Indeed the transfer function is generated prior to the testing. However during the testing this function will remain approximately the same. The qualification is done for ton level (the most challenging) therefore there is no need to look at variability with the level. However, if a future protocol will require that, then we suggest to use different amplification method (see Mosqueda et al. (2009b))

Floor flexibility and its natural frequencies. (#37 ~ 38)

37. “There are many actual measurements of resonant frequencies of the floors. For instance, one of them studied composite 31m x 18.5m (93 ft. x 55 ft., so more than 5000 ft²) steel deck floors and measured actual resonant frequency as low as 6.25 Hz. The other research studied 32 buildings and found that frequencies can vary from 3.5 Hz to 9.5 Hz.”

38. “So it looks that we have a quite a bit of variation of resonant frequencies. The other complication is a mode of vibration: one of the panels of the floor might be at its upside peak and another one can be at its downside peak as it is shown in SAP model of your frame. I would recommend conducting a detailed research on this issue.

I support the majority of concerns raised by the community. Some of my comments described herein are similar to the concerns raised by others.”

#23. The designers shall appreciate getting the references for further cross checking. The current design is based on the information from Murray et al. (1997) and from his sources. The range goes from 2.8-12 Hz. We developed a system with frequencies between 8 and 10 Hz primarily but may be varied downwards.

#24. It is the intent of work to develop the base motion such that will not excite the unwanted modes. But this will remain to be verified during the “shakedown” testing.
Dennis Alvarez 39. “While I'm sure Dr. Takhirov's comments are well taken, I'm concerned that some of his objectives are outside of the proposed objectives for the NEES study.

I think there is a general consensus in the ceiling industry that further testing, using the same table as the NEES study, would be more appropriate for topics such as examining the suitability of the transfer function.”

#25. While one of the intentions is to verify the compensations using transfer functions, we are aware to the needs of industry, and try to reconcile some of the conflicting effects.
MCEER Technical Reports

MCEER publishes technical reports on a variety of subjects written by authors funded through MCEER. These reports are available from both MCEER Publications and the National Technical Information Service (NTIS). Requests for reports should be directed to MCEER Publications, MCEER, University at Buffalo, State University of New York, 133A Ketter Hall, Buffalo, New York 14260. Reports can also be requested through NTIS, P.O. Box 1425, Springfield, Virginia 22151. NTIS accession numbers are shown in parenthesis, if available.

NCEER-87-0003 "Experimentation Using the Earthquake Simulation Facilities at University at Buffalo," by A.M. Reinhorn and R.L. Ketter, to be published.

NCEER-87-0004 "The System Characteristics and Performance of a Shaking Table," by J.S. Hwang, K.C. Chang and G.C. Lee, 6/1/87, (PB88-134259, A03, MF-A01). This report is available only through NTIS (see address given above).

NCEER-87-0007 "Instantaneous Optimal Control Laws for Tall Buildings Under Seismic Excitations," by J.N. Yang, A. Akbarpour and P. Haamamaghami, 6/10/87, (PB88-134333, A06, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0008 "IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame - Shear-Wall Structures," by Y.J. Park, A.M. Reinhorn and S.K. Kunnath, 7/20/87, (PB88-134325, A09, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0009 "Liquefaction Potential for New York State: A Preliminary Report on Sites in Manhattan and Buffalo," by M. Budhu, V. Vijayakumar, R.F. Giese and L. Baumgras, 8/31/87, (PB88-163704, A03, MF-A01). This report is available only through NTIS (see address given above).

NCEER-87-0010 "Vertical and Torsional Vibration of Foundations in Inhomogeneous Media," by A.S. Veletsos and K.W. Dotson, 6/1/87, (PB88-134291, A03, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0011 "Seismic Probabilistic Risk Assessment and Seismic Margins Studies for Nuclear Power Plants," by Howard H.M. Hwang, 6/15/87, (PB88-134309, A03, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0012 "Parametric Studies of Frequency Response of Secondary Systems Under Ground-Acceleration Excitations," by Y. Yong and Y.K. Lin, 6/10/87, (PB88-134309, A03, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0014 "Modelling Earthquake Ground Motions in Seismically Active Regions Using Parametric Time Series Methods," by G.W. Ellis and A.S. Cakmak, 8/25/87, (PB88-134283, A08, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0015 "Detection and Assessment of Seismic Structural Damage," by E. DiPasquale and A.S. Cakmak, 8/25/87, (PB88-163712, A05, MF-A01). This report is only available through NTIS (see address given above).
NCEER-87-0016 "Pipeline Experiment at Parkfield, California," by J. Isenberg and E. Richardson, 9/15/87, (PB88-163720, A03, MF-A01). This report is available only through NTIS (see address given above).

NCEER-87-0017 "Digital Simulation of Seismic Ground Motion," by M. Shinozuka, G. Deodatis and T. Harada, 8/31/87, (PB88-155197, A04, MF-A01). This report is available only through NTIS (see address given above).

NCEER-87-0018 "Practical Considerations for Structural Control: System Uncertainty, System Time Delay and Truncation of Small Control Forces," J.N. Yang and A. Akbarpour, 8/10/87, (PB88-163738, A08, MF-A01). This report is only available through NTIS (see address given above).

NCEER-87-0022 "Seismic Damage Assessment of Reinforced Concrete Members," by Y.S. Chung, C. Meyer and M. Shinozuka, 10/9/87, (PB88-150867, A05, MF-A01). This report is available only through NTIS (see address given above).

NCEER-87-0025 "Proceedings from the Symposium on Seismic Hazards, Ground Motions, Soil-Liquefaction and Engineering Practice in Eastern North America," October 20-22, 1987, edited by K.H. Jacob, 12/87, (PB88-188115, A23, MF-A01). This report is available only through NTIS (see address given above).

NCEER-87-0026 "Report on the Whittier-Narrows, California, Earthquake of October 1, 1987," by J. Pantelic and A. Reinhorn, 11/87, (PB88-187752, A03, MF-A01). This report is available only through NTIS (see address given above).

NCEER-87-0027 "Design of a Modular Program for Transient Nonlinear Analysis of Large 3-D Building Structures," by S. Srivastav and J.F. Abel, 12/30/87, (PB88-187950, A05, MF-A01). This report is only available through NTIS (see address given above).

NCEER-88-0010 "Base Isolation of a Multi-Story Building Under a Harmonic Ground Motion - A Comparison of Performances of Various Systems," by F-G Fan, G. Ahmadi and I.G. Tadjbakhsh, 5/18/88, (PB89-122238, A06, MF-A01). This report is only available through NTIS (see address given above).

NCEER-88-0018 "An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers," by R.C. Lin, Z. Liang, T.T. Soong and R.H. Zhang, 6/30/88, (PB89-122212, A05, MF-A01). This report is available only through NTIS (see address given above).

NCEER-88-0021 "Seismic Interaction of Structures and Soils: Stochastic Approach," by A.S. Veletsos and A.M. Prasad, 7/21/88, (PB89-122196, A04, MF-A01). This report is only available through NTIS (see address given above).

NCEER-88-0022 "Identification of the Serviceability Limit State and Detection of Seismic Structural Damage," by E. DiPasquale and A.S. Cakmak, 6/15/88, (PB89-122188, A05, MF-A01). This report is available only through NTIS (see address given above).

NCEER-88-0024 "Automated Seismic Design of Reinforced Concrete Buildings," by Y.S. Chung, C. Meyer and M. Shinozuka, 7/5/88, (PB89-122170, A06, MF-A01). This report is available only through NTIS (see address given above).

NCEER-88-0031 "Design Approaches for Soil-Structure Interaction," by A.S. Veletsos, A.M. Prasad and Y. Tang, 12/30/88, (PB89-174437, A03, MF-A01). This report is available only through NTIS (see address given above).

NCEER-88-0038 "Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling," by A. Mokha, M.C. Constantinou and A.M. Reinhorn, 12/5/88, (PB89-218457, A10, MF-A01). This report is available only through NTIS (see address given above).

NCEER-89-0005 "Experiment on Performance of Buried Pipelines Across San Andreas Fault," by J. Isenberg, E. Richardson and T.D. O'Rourke, 3/10/89, (PB89-218440, A04, MF-A01). This report is available only through NTIS (see address given above).

NCEER-89-0011 "Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D), Part 1 - Modeling," by S.K. Kunnath and A.M. Reinhorn, 4/17/89, (PB90-114612, A07, MF-A01). This report is available only through NTIS (see address given above).

NCEER-90-0003 "Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/16/90, (PB91-251984, A05, MF-A05). This report has been replaced by NCEER-92-0018.

<table>
<thead>
<tr>
<th>Report Number</th>
<th>Title</th>
<th>Authors</th>
<th>Dates</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCEER-90-0011</td>
<td>"Program LINEARID for Identification of Linear Structural Dynamic Systems," by C-B. Yun and M. Shinozuka, 6/25/90</td>
<td>(PB91-110312, A08, MF-A01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEER-90-0016</td>
<td>"Instantaneous Optimal Control with Acceleration and Velocity Feedback," by J.N. Yang and Z. Li, 6/29/90</td>
<td>(PB91-125401, A03, MF-A01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEER-90-0018</td>
<td>"Evaluation of Liquefaction Potential in Memphis and Shelby County," by T.S. Chang, P.S. Tang, C.S. Lee and H. Hwang, 8/10/90</td>
<td>(PB91-125427, A09, MF-A01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEER-90-0019</td>
<td>"Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring Isolation System," by M.C. Constantinou, A.S. Mokha and A.M. Reinhorn, 10/4/90</td>
<td>(PB91-125385, A06, MF-A01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEER-90-0020</td>
<td>"Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with a Spherical Surface," by A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, 10/11/90</td>
<td>(PB91-125419, A05, MF-A01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEER-90-0023</td>
<td>"Study of Site Response at a Selected Memphis Site," by H. Desai, S. Ahmad, E.S. Gazetas and M.R. Oh, 10/11/90</td>
<td>(PB91-196857, A03, MF-A01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEER-90-0025</td>
<td>"A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions," by L-L. Hong and A.H.-S. Ang, 10/30/90</td>
<td>(PB91-170399, A09, MF-A01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCEER-90-0029</td>
<td>"Soil Effects on Earthquake Ground Motions in the Memphis Area," by H. Hwang, C.S. Lee, K.W. Ng and T.S. Chang, 8/2/90</td>
<td>(PB91-190751, A05, MF-A01)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NCEER-91-0005 "3D-BASIS - Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part II," by S. Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 2/28/91, (PB91-190553, A07, MF-A01). This report has been replaced by NCEER-93-0011.

NCEER-91-0009 "Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/30/91, (PB91-212142, A06, MF-A01). This report has been replaced by NCEER-92-0018.

NCEER-92-0032 "Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid Viscous Dampers," by M.C. Constantinou and M.D. Symans, 12/21/92, (PB93-191435, A10, MF-A03). This report is available only through NTIS (see address given above).

NCEER-93-0008 "Retrofit of Reinforced Concrete Frames Using Added Dampers," by A. Reinhor, M. Constantinou and C. Li, to be published.

NCEER-93-0012 "Effects of Hydrocarbon Spills from an Oil Pipeline Break on Ground Water," by O.J. Helweg and H.H.M. Hwang, 8/3/93, (PB94-141942, A06, MF-A02).

NCEER-97-0017 "Seismic Fragility of Existing Conventional Reinforced Concrete Highway Bridges," by C.L. Mullen and A.S. Cakmak, 12/30/97, (PB98-153406, A08, MF-A02).

MCEER-98-0006 "Structural Steel and Steel/Concrete Interface Details for Bridges,” by P. Ritchie, N. Kauhl and J. Kulicki, 7/13/98, (PB99-118945, A06, MF-A01).

MCEER-00-0007 "Low-Cycle Fatigue Behavior of Longitudinal Reinforcement in Reinforced Concrete Bridge Columns," by J. Brown and S.K. Kunnath, 7/23/00, (PB2001-104392, A08, MF-A02).

MCEER-00-0009 "Proceedings of the First MCEER Workshop on Mitigation of Earthquake Disaster by Advanced Technologies (MEDAT-1)," edited by M. Shinozuka, D.J. Inman and T.D. O'Rourke, 11/10/00, (PB2001-105399, A14, MF-A03).

MCEER-00-0013 "Effect of Spatial Variation of Ground Motion on Highway Structures," by M. Shinozuka, V. Saxena and G. Deodatis, 12/31/00, (PB2001-108755, A13, MF-A03).

MCEER-04-0011 “Seismic Retrofit of Bridge Steel Truss Piers Using a Controlled Rocking Approach,” by M. Pollino and M. Bruneau, 12/20/04 (PB2006-108221).

“Multi-Dimensional Fragility of Structures,” by G.P. Cimellaro, A.M. Reinhorn and M. Bruneau, 3/1/06 (PB2007-106974, A09, MF-A02, CD A00).

MCEER-08-0003 “Analytical and Experimental Investigation of a Controlled Rocking Approach for Seismic Protection of Bridge Steel Truss Piers,” by M. Pollino and M. Bruneau, 1/21/08 (PB2008-112233).

MCEER-08-0010 “Experimental Investigation of Full-Scale Two-Story Steel Plate Shear Walls with Reduced Beam Section Connections,” by B. Qu, M. Bruneau, C-H. Lin and K-C. Tsai, 3/17/08 (PB2009-106368).

MCEER-08-0012 “Seismic Behavior and Design of Boundary Frame Members of Steel Plate Shear Walls,” by B. Qu and M. Bruneau, 4/26/08 . (PB2009-106744).

“Evolutionary Methodology for Aseismic Decision Support,” by Y. Hu and G. Dargush, 12/15/08.

“Development of a Steel Plate Shear Wall Bridge Pier System Conceived from a Multi-Hazard Perspective,” by D. Keller and M. Bruneau, 12/19/08 (PB2010-102696).

“Generalized Linear (Mixed) Models of Post-Earthquake Ignitions,” by R.A. Davidson, 7/20/09 (PB2010-102698).

MCEER-09-0009 “Quantification of Disaster Resilience of Health Care Facilities,” by G.P. Cimellaro, C. Fumo, A.M Reinhorn and M. Bruneau, 9/14/09.

MCEER-09-0010 “Performance-Based Assessment and Design of Squat Reinforced Concrete Shear Walls,” by C.K. Gulec and A.S. Whittaker, 9/15/09 (PB2010-102700).

